

மனனோன்மணியம் சுந்தரனோர் பல்கலலக்கழகம்

MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI-627 012

த ொலைநிலை த ொடர ்கல்வி இயக்ககம்

DIRECTORATE OF DISTANCE AND

CONTINUING EDUCATION

B.Sc. CHEMISTRY

II YEAR

Programming Language C++

Sub. Code: JECS41

Prepared by

Dr. S. KALAISELVI

Assistant Professor

Department of Mathematics

Sarah Tucker College(Autonomous), Tirunelvei-7.

1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

B.Sc. CHEMISTRY–II YEAR

JECS41: Programming Language C++

SYLLABUS

Unit I

Introduction, Tokens, Key words, Identifiers and constants, Basic data types, User defined data types,

storage classes, Derived data types, Symbolic constants.

Chapter 1: Sections 1.1.-1.6.

Unit II

Introduction, The main function, function prototyping, Call by reference, Return by references, Inline

functions, Default arguments, constant Arguments, Recursion, Function overloading, Friend and virtual

functions, Math library functions, C structures Revisited, Specifying a class, Defining member

functions, A C++ program with class, Making an outside functions inline, Nesting member functions,

Private member functions, Arrays within a class, Memory allocation for objects, Static member

functions, Array of objects, objects as function arguments, Friend functions, Returning objects.

Chapter 2: Sections 2.1.-2.22.

Unit III

Introduction, Constructors, Parameterized constructors, Multiple constructors in a class, Constructors

with default arguments, Dynamic initialization of objects, Copy constructor, Constructing Two-

Dimensional arrays, constant objects, Destructors.

Chapter 3: Sections 3.1.-3.7.

Unit IV

Introduction, defining operator over loading, over loading unary operator, Overloading Binary operator,

Overloading Binary operators using Friends, Manipulation of strings using operators, Some other

Operator over loading examples, Rules for Over loading Operators

Chapter 4: Sections 4.1.-4.7.

Unit V

Introduction, Defining Derived classes, Single inheritance, Making a private member in heritable,

multi-level in heritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance.

Chapter 5: Sections 5.1-5.8.

Reference Books

1.ReemaThareja, Object Oriented Programming with C++, Oxford University Press (January 2018).

2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

JECS41: Programming Language C++

CONTENTS

Unit I

1.1 Introduction to C++ 4

1.2 Tokens in C++ 9

1.3 Keywords 10

1.4 Identifier 10

1.5 Constants 11

1.6 Data Types in C++ 14

Unit II

2.1 Introduction 18

2.2 Need for Functions 19

2.3 Using Functions 21

2.4 Function Declaration or Function Prototype 21

2.5 Function Definition 23

2.6 Call-by-Reference 24

2.7 Return By Reference 33

2.8 Inline Functions 36

2.9 Default Arguments 39

2.10 Passing Constants as Arguments 43

2.11 Recursion versus Iteration 44

2.12 Function Overloading 45

2.13 Specifying a Class 52

2.14 Function Definition 54

2.15 Making a Member Function Inline 56

2.16 Nested Member Functions 57

2.17 Memory Allocation for Class and Objects 58

2.18 Static Member Functions 58

2.19 Array of Objects 60

2.20 Objects as Function Arguments 60

2.21 Friend Function 62

3

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.22 Returning Objects 65

Unit III

3.1 Introduction 67

3.2 Constructor 68

3.3 Types of Constructors 69

3.4 Constructor With Default Arguments 74

3.5 Constructor Overloading 76

3.6 Constant Objects 83

3.7 Destructors 85

Unit IV

4.1 Introduction 100

4.2 Scope of Operator Overloading 100

4.3 Oрerators that can and cannot be overloaded 101

4.4 Implementing Operator Overloading 103

4.5 Overloading Unary Operators 103

4.6 Overloading binary operators 110

4.7 Overloading Special Operators 113

Unit V

5.1 Introduction 124

5.2 Defining Derived Classes 125

5.3 Making a private member in heritable 125

5.4 Single Inheritance 126

5.5 Multi-Level Inheritance 131

5.6 Multiple Inheritance 133

5.7 Hierarchical Inheritance 134

5.8 Hybrid Inheritance 136

4

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Unit I

Introduction, Tokens, Key words, Identifiers and constants, Basic data types, User defined data

types, storage classes, Derived data types, Symbolic constants.

Chapter 1: Sections 1.1-1.6.

1.1. Introduction to C++

 C++ is a general purpose programming language developed by Bjarne Stroustrup in 1979 at

Bell Labs. Similar to C programming, C++ is also considered as an intermediate level language

because it includes the features of both high-level and low-level languages. C++ is a very

popular programming language that can be implemented on a wide variety of hardware and

operating system platforms. It is a powerful language for high-performance applications,

including writing operating systems, system software, application software, device drivers,

embedded software, high-performance client and server applications, software engineering,

graphics, games, and animation software.

C++ is a superset of the C language; it supports all features of C language and adds other new

features such as classes, objects, polymorphism, inheritance, data abstraction, encapsulation,

single-line comments using two forward slashes, strong type checking, and so on. C++ is an

object-oriented programming (OOP) language and facilitates design, reuse, and maintenance

for complex software. It has an extensive library to enable programmers to reuse the existing

code. Generally, the number of instructions required to perform a task in C++ is comparatively

less than those required to be written in other high-level languages. The code written in C++ is

easy to write, debug, and modify.

 1.1.1. History of C++

In 1979, Bjarne Stroustrup, while working for his Ph D thesis, used a language called Simula,

which was specifically designed for simulations. It was the first language to support the features

of OOP. Though the language was very powerful, it was too slow for practical use. Therefore,

Stroustrup started working on 'C with Classes', with an aim to integrate ООР features such as

classes, inheritance, inline functions, and default arguments with the C language. This new

language was easily portable and fast, provided low-level functionality, and included OOP

concepts. In the same period, C front (the first C with classes compiler) was developed to

translate C with classes code to ordinary C. Most of the code for C front was written in C with

classes, making it a self-hosting compiler. A self-hosting compiler compiles itself. However,

5

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

the use of this compiler was abandoned in 1993 after it became difficult to integrate new

features such as exceptions into it.

In 1983, the name of the language was changed to C++, where ++ refers to adding new features

in the C language. At this time, some more features such as virtual functions, function

overloading, references with the & symbol, const keyword, and single-line comments were

added. In 1985, though C++ was not officially standardized, it was implemented as a

commercial product. In 1989, C++ was again updated to include protected members, static

members, and multiple inheritance. In 1990, Turbo C++ compiler was released and added

additional libraries. In 1998, the first international standard for C++ that included the standard

template library, called the C++98, was published. However, this version had some problems

which were addressed in the version released in 2003. It was called C++03.

The latest version of C++ known as C++11 was released in 2011. It added new features such

as support for regular expression, a new C++ time library, atomics support, a standard threading

library, a new for loop syntax (similar to for each loop), the auto keyword, new container

classes, and better support for unions and array-initialization.

Structure of C++ Program

Figure 1.1. Structure of a C++ program

A C++ program is composed of a pre-processor directives section, global declaration section,

class declaration and method definition section, and a main function as shown in Fig. 1.1. The

pre-processor directives contain special instructions that indicate how to prepare the program

for compilation. One of the most important and commonly used preprocessor commands is

'include', which informs the compiler that some information is needed from the specified header

6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

file to execute the program. In this section, we will omit the global declaration part and revisit

it in the chapter on 'Functions'. Usually, it is used to declare data (variables), functions, and

structures that have global scope. The class declaration and method definition section can be

considered as a part of global declaration section that is used to declare classes. A class consists

of data and methods. The methods or functions of the class are also defined in this section. A

C++ program may contain any number of functions. A function is defined as a group of C++

statements that are executed together and written in a logical sequence to perform a specific

task. The 'main()' function is the most important function and is a part of every C++ program.

Rather, the execution of a C++ program begins at this function as the operating system

automatically calls it main(). This means that main() is the entry point for all the functions. All

other functions, if present in the program, are called from main(). The method definition section

is optional and required only if there are functions other than class methods in the program.

This section was also added to support C++ programs.

1.1.2. Writing the first C++ program:

To write a C++ program, we need to write the code. We need to open a text editor. If you are

a Windows user, you may use Notepad and if you prefer working on UNIX or Linux, you can

use emacs or vi. Once the text editor is opened on your screen, type the following statements.

Note:

The cout and return statements have been indented or moved away from the left side. This is

done to make the code more readable.

After writing this code, save the file with any name with a.cpp extension. For example, let us

save this file with the name, 'first.cpp'. Once Turbo C++ is installed in your computer and if

7

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

you are using Windows, open the command prompt by clicking 'Start->Run', type 'command',

and click Ok.

Using the command prompt, change to the directory in which you had saved your file and then

type the following:

C:\>tcc first.cpp

This command is used to compile your C++ program. If there are any mistakes in the program,

the compiler point out the mistake and the line on which it was done. In case of errors, you

need to reopen your.cpp file and correct those mistakes. However, if everything is correct, no

errors will be reported and the compiler will create an exe file for your program. This.exe file

can be directly run by typing the following:

C:\>first.exe or simply C:\>first

Linux users should write$ g++ first.cpp to compile the program, and then type $./a.out to

execute it. This will give you the following output on the screen

Welcome to the World of C++

Let us now try to understand the meaning of each line of the program.

Line 1. // My first program

The statement begins with two slash signs to indicate that the rest of the line is a comment. A

comment is specifically inserted by the programmer to include short explanations concerning

the code. This makes the programs more readable and understandable by the users. These

comments have no effect on execution of the program. In the program mentioned here,

comment has been simply included to give a brief introductory description of the program.

Line 2. using namespace std;

Let us take an analogy if a team has four members, then you can either refer to each person

individually or just say the entire team. When you use the word 'team' it means every individual

member. Same is the case with namespaces. We will read about namespaces in the latter

chapters but for now just understand that namespace is a collection of important functions and

classes. There can be many namespaces. So, every namespace is identified by a specific name.

If you are using any particular thing from a namespace, then you have to write the statement

using namespace name;

The statement using namespace std; makes all the names from the namespace std available in

the current program. std is an abbreviation of standard. It is the standard namespace in C++.

cout, cin and a lot of other things are defined in it. If you don't write the using namespace std;

8

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

then the compiler will not be able to understand which classes or functions you are trying to

access and will thus, generate a compiler error.

 Line 3. #include

This is a preprocessor command that comes as the first statement in our code. All preprocessor

commands start with a hash symbol (#). The preprocessor commands are not executed by the

compiler. Rather, they are read and interpreted by the preprocessor. It is a special line

interpreted before the commencement of the compilation of the program. The #include

statement tells the compiler to include the standard input or output library or header file

(iostream) in the program. This file has some in-built functions. By including this file in our

code, we can use these functions directly. The standard input or output header file contains

functions for input and output of data such as reading values from the keyboard and printing

the results on the screen.

Line 4. int main()

int is the return value ofthe main function. After all the statements in the program have been

written, the last statement of the program will return an integer value (zero for successful

execution and a non-zero value for any abnormal termination) to the operating system. The

statement int main() is basically the function declaration. We will read more on function

declaration in chapter 4.

Note: By default the return type of main() function is int. So, writing main() or int main() is

equivalent.

Lines 5&8. { }

The two curly brackets are used to group all related statements of the function main. All

statements between the braces form the function body. The function body contains a set of

instructions to perform the given task.

Line 6. cout<<"\n Welcome to the World of C++";

The cout function is defined in the iostream.h file and is used to print text on the screen. The

message that has to be displayed on the screen is enclosed within double quotes. The '\n' is an

escape sequence and represents a newline character. It is used to print the message on a new

line on the screen. Programming Tip: Placing a semi-colon after the parenthesis of main will

generate a compiler error. An escape sequence is a combination of characters that is translated

into another character or a sequence of characters that may be difficult or impossible to

9

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

represent directly. Similar to the newline character, the other escape sequences supported by

C++ are shown in Table 2.1. The end of the statement is marked with semicolon (;).

Note

1. Escape sequences are actually non-printing control characters that begin with a backslash

(1).

2. statement in the main function ends with a semi-colon (;).

Table 1.1 Escape sequences

1.2.Tokens in C++ :

Tokens are the basic buildings blocks in C++ language. You may think of a token as the

smallest individual unit in a C++ program. This means that a program is constructed using a

combination these tokens. There are six main types of tokens in C++. They are shown in the

Fig. 1.1.

Figure1.1. Tokens is C++

10

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

1.3. Keywords:

Similar to every computer language, C++ has a set of reserved words, often known as keywords

that cannot be used as an identifier. All keywords are basically a sequence of characters that

have a fixed meaning. The meaning of a keyword cannot be changed by the programmer.

Conventionally, all keywords must be written in lowercase. Table 2.3 contains a list of

keywords that are common to C and C++. Table 2.4 lists some C++-specific keywords.

Table.1.2. Keywords common to C and C++ languages

Table 1.3. Keywords specific to C++ language

As you read this book, the meaning and utility of each keyword will become clearer to you.

1.4. Identifier:

Identifiers, as the name suggests, helps us to identify data and other objects in the program.

Identifiers are basically the names given to program elements such as variables, arrays, and

functions. An identifier may consist of an alphabet, digit, or an underscore.

The name cannot include any special characters or punctuation marks, except the

underscore"_". There cannot be two successive underscores. Keywords cannot be used as

identifiers. The case of alphabetic characters that form the identifier name is significant. For

example, "FIRST" is different from "first" and "First". The identifier name must begin with an

alphabet or an underscore. However, use of underscore as the first character must be avoided

because several complier-defined identifiers in the standard C++ library have underscore as

their first character. Therefore, inadvertently duplicated names may cause definition conflicts.

Identifiers can be of any reasonable length. They should not contain more than 31 characters.

They can be longer than 31; however, the compiler looks at only the first 31 characters of the

name.

Although it is not compulsory, it is a good practice to use meaningful identifier names. Good

identifiers are descriptive but short. To cut short the identifier, you may use abbreviations. C++

11

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

allows identifiers (names) to be up to 63 characters long. If a name is longer than 63 characters,

then only the first 63 characters are used. As a general practice, if the identifier is a little long

(more than 4-5 characters), then you may use an underscore to separate the parts of the name

or you may use capital letters for each part.

Examples of valid identifiers include the following:

roll_number, marks, name, emp_number, basic_pay, HRA, DA, dept_code, DeptCode,

RollNo, EMP NO

Examples of invalid identifiers include the following:

23_student, %marks, @name, #emp_number, basic.pay, -HRA, (DA), &dept_code, auto

Note:

C++ is a case-sensitive language. Therefore, rno, Rno, RNo, and RNO are different identifiers.

1.5.Constants:

Constants are identifiers whose value does not change. While variables can change their value

at any time, constants can never change their value. Constants are used to define fixed values

such as Pi or the charge on an electron so that their value does not get changed in the program

even by mistake. A constant is an explicit data value specified by the programmer. The value

of the constant is known to the compiler at the compile time. C++ allows the programmer to

specify constants of integer type, floating point type, character type, and string type (refer to

Fig. 2.2).

 Figure 2.2. Constants in C++

1.5.1. Integer Constant:

A constant of integer type consists of a sequence of digits. For example, 1, 34, 567, and 8907

are valid integer constants. A literal (constant) integer such as 1234 is of type int by default.

For a long integer constant, the literal is succeeded with either 'L' or '1' (such as 1234567L).

Similarly, an unsigned int literal is written with a 'U' or 'u' suffix (ex, 120). Therefore, 1234L

12

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

12341 1234U 1234u 1234LU 1234ul are all valid integer constants. Literal integers can be

expressed in decimal, octal, or hexadecimal notation. By default, an integer is expressed in

decimal notation. Decimal integers consist of a set of digits from e through 9, preceded by an

optional - or + sign. Examples of decimal integer constants include 123 -123 +123 e While

writing integer constants, embedded spaces, commas and non-digit characters are not allowed.

Therefore, integer constants given below are totally invalid in C++. 123 456 12, 34, 567 $123

123.456 An integer constant preceded by a zero (0) is an octal number. Octal integers consist

of a set of digits, e through 7. Example of octal integers include

012 Θ 01234

Similarly, an integer constant is expressed in hexadecimal notation if it is preceded by 0x or

ex. Hexadecimal numbers contain digits from 0-9 and alphabets from A through F. The

alphabets A through F represent numbers 10 through 15. For example, decimal 72 is equivalent

to 0110 in octal notation and 0x48 in hexadecimal notation. Example of octal integers include

0X12 0x7F 0xABCD 0X1A3B

Note:

A decimal integer constant is treated as an unsigned long if its magnitude exceeds that of signed

long. An octal or hexadecimal integer that exceeds the limit of int is taken to be unsigned. If

even this limit is exceeded, it is taken as long; and in case this limit is exceeded, it is treated as

unsigned long.

1.5.2. Floating Point Constant:

Integer numbers are inadequate to express numbers that have a fractional part. A floating point

constant, therefore, consists of an integer part, a decimal point, a fractional part, and an

exponent field, containing an e or E (e means exponent) followed by an integer where the

fraction part and integer part are sequence of digits. However, it is not necessary that every

floating point constant must contain all these parts. Some floating point numbers may have

certain parts missing. Some valid examples of floating point numbers are as follows: 0.02 -0.23

123.456 +0.34 123. .9 -.7 +.8

A literal such as 0.07 is treated as of type double by default. To make it a float-type literal, you

must specify it using suffix F or f. Consider some valid floating point literals given below.

(Note that suffix L is for long double)

0.02F 0.34f 3.141592654L 0.002146 2.146E-3

13

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

A floating-point number may also be expressed in scientific notation. In this notation, the

mantissa is either a floating point number or an integer and exponent is an integer with an

optional plus or minus sign. Therefore, the numbers given below are valid floating point

numbers.

0.5e2 14E-2 1.2e+3 2.1E-3 -5.6e-2

Hence, we see that scientific notation is used to express numbers that are either very small or

very large. For example,

120000000 = 1.2E8 and -0.000000025 = -2.5E-8:

1.5.3. Character Constant:

A character constant consists of a single character enclosed in single quotes. For example, 'a',

@ are character constants. In computers, characters are stored using machine's character set for

example using ASCII codes. Note that all escape sequences mentioned in Table 2.6 are also

character constants.

1.5.4. String Constant:

A string constant is a sequence of characters enclosed in double quotes. Hence, 'a' is not the

same as "a". The characters comprising the string constant are stored in successive memory

locations.

When a string constant is encountered in a C++program, the compiler records the address of

the first character and appends a null character ('\0') to the string to mark the end of the string.

Therefore, the length of a string constant is equal to number of characters in the string plus 1

(for the null character). In the same manner, the length of string literal "he11o" is 6.

1.5.5. Declaring Constants:

To declare a constant, precede the normal variable declaration with const keyword and assign

it a value. For example,

const data_type const_name = value;

The const keyword specifies that the value of pi cannot change.

 const float PI = 3.14;

 However, another way to designate a constant is to use the pre-processor command define.

Similar to other pre-processor commands, define is preceded with a # symbol. Although

#define statements can be placed anywhere in a C program, it is always recommended that

these statements be placed at the beginning of the program to make them easy to find and

14

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

modify at a later stage. Look at the example given here which defines the value of PI using

define.

 #define PI 3.14159

 #define service_tax 0.12

In these examples, though the value of PI will never change, service tax may change. Whenever

the value of the service tax is altered, it can be corrected only in the define statement. When

the pre-processor reformats the program to be compiled by the compiler, it replaces each

defined name (such as PI and service_tax) with its corresponding value, wherever it is found

in the source program. Hence, it just works similar to the Find and Replace command available

in a text editor. Let us have a look at some rules that needs to be applied to a #define statement

which defines a constant.

Rule 1 Constant names are usually written in capital letters to visually distinguish them from

other variable names which are normally written in lower case characters. Note that this is just

a convention and not a rule.

Rule 2 No blank spaces are permitted in between the # symbol and define keyword.

Rule 3 Blank space must be used between #define and constant name and between constant

name and constant value.

 Rule 4 #define is a pre-processor compiler directive and not a statement. Therefore, it does not

end with a semi-colon.

1.6.Data Types in C++:

Data are used to represent information. They can be classified into different categories or types

shown in Fig.2.3.

Figure 2.3. Data types in C++

15

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

In this section, we will read only about the basic data types in C++. The complex data types will

be taken up in subsequent chapters.

C++ language provides very few basic data types. Table 1.4 lists the data types, their keywords,

size, range, and usage for a C++ programmer on a 16-bit computer.

In addition to this, we also have variants of char, int, and double data types.

The char data type is one byte and is used to store single characters. Note that C++ does not

provide any data type for storing text. This is because the text is made up of individual

characters.

Generally, char is supposed to store characters not numbers; however, the range of char is

given as -128 to 127 here. The reason for this change is that in memory, characters are stored

in their

 Table 1.4. Basic data types in C++

ASCII codes. For example, the character 'A' has the ASCII code 65. In memory, we will not

store 'A' but 65 in binary format.

Table 1.5 shows the variants of basic data types in detail.

16

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Table 1.5. Detailed list data types

In Table 1.5, we have unsigned char and signed char, but do not have negative characters. The

reason for having negative data types is because we use signed and unsigned char to ensure

portability of programs that store non-character data as char.

While the smaller data types occupy less memory, the larger types incur a performance penalty.

Although the data type we use for our variables does not have a big impact on the speed or

memory usage of the application, we should always try to use int, unless there is a special need

to use any other data type.

Last but not the least, the void type holds no value. It is primarily used in three cases as follows:

17

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

• To specify the return type of a function (when the function returns no value)

• To specify the parameters of the function (when the function accepts no arguments from the

caller)

• To create generic pointer

Note:

Unsigned int/char liberates the sign bit and makes the entire word available for storage of the

non-negative numbers.

Review Questions

1. What are variables?

2. What does the data type of a variable signify?

3. Give the structure of a C++ program.

4. What do you understand by identifiers and keywords?

5. Write a short note on basic data types that the C++ language supports.

6. How can we get formatted output in C++ programs?

7. Why do we include <iostream.h> in our programs?

8. Explain the utility of #define and #include statements.

9. Explain the types of data types.

10. Explain the user defined data types.

18

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Unit II

Introduction, The main function, function prototyping, Call by reference, Return by references,

Inline functions, Default arguments, constant Arguments, Recursion, Function overloading,

Friend and virtual functions, Math library functions, C structures Revisited, Specifying a class,

Defining member functions, A C++ program with class, Making an outside functions inline,

Nesting member functions, Private member functions, Arrays within a class, Memory

allocation for objects, Static member functions, Array of objects, objects as function

arguments, Friend functions, Returning objects.

Chapter 2: Sections 2.1.-.

2.1. Introduction:

C + + enables programmers to break up a program into segments commonly known as

functions. Each function can be written more or less independently of the others. Every

function in the program is supposed to perform a well-defined task. Therefore, the program

code of one function is completely insulated from that of other functions.

Every function interfaces to the outside world in terms of how information is transferred to it

and how results generated by the function are transmitted back from it. This interface is

basically specified by the function name. For example, look at Fig. 2.1 which explains how the

main() calls another function to perform a well-defined task.

In Fig. 2.1, we see that main() calls function named func1(). Therefore, main() is known as the

calling function and func1() is known as the called function. The moment the compiler

encounters a function call, instead of executing the next statement in the calling function, the

control jumps to the statements that are a part of the called function. After the called function

is executed, the control is returned back to the calling program.

Figure 2.1 main() and func1()

19

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

It is not necessary that the main () can call only one function. It can call as many functions as

it wants and as many times as it wants. For example, a function call placed within a for loop,

while loop, or do-while loop may call the same function multiple times until the condition

holds true.

Another point to note here is that it is not that only the main() can call another functions. Any

function can call any other function. For example, look at Fig. 2.2 which shows one function

calling another, and the other function, in turn, calling some other function.

Figure 2.2 Function calling another function

Therefore, we see that every function encapsulates a set of operations and when called, it

returns information to the calling program.

2.2. Need for Functions:

Analysing the reasons for segmenting a program into manageable chunks is an important

aspect of programming.

 Dividing the program into separate well-defined functions facilitates each function to

be written and tested separately. This simplifies the process of getting the total

program to work. Figure 2.3 shows that the main() calls other functions for dividing

the entire code into smaller sections (or functions).

 Understanding, coding, and testing multiple separate functions are far easier than

doing the same for one huge function.

 If a big program has to be developed without using any function other than main(),

there will be many lines in the main(). Maintaining the program will be a big mess. A

large program is a serious issue in micro-computers where memory space is limited.

 All libraries in C + + contain a set of functions that programmers are free to use in

their programs. These functions have been prewritten and pretested. Therefore,

20

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

programmers use them without worrying about their code details. This speeds up

program development, by allowing the programmer to concentrate only on the code

that

Figure 2.3 Top-down approach of solving a problem he has to write.

 When a big program is broken into comparatively smaller functions, different

programmers working on that project can divide the workload by writing different

functions.

 Like C + + libraries, programmers can also make their functions and use them from

different points in the main program or any other program that needs its functionalities.

Figure 2.4 Function func1() called twice from the main()

Consider a program that executes a set of instructions repeatedly 𝑛 times, though not

continuously. In case the instructions had to be repeated continuously for 𝑛 times, they can

better be placed within a loop. However, if these instructions have to be executed abruptly from

anywhere within the program code, instead of writing these instructions in all areas where they

are required, it is better to place these instructions in a function and call that function wherever

required. Figure 2.4 explains this concept.

21

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.3 Using Functions:

In the first chapter, we have mentioned that while executing a C + + program, the operating

system calls the main() function which marks the entry point for execution of the program.

When the program is executed, the main() returns some value to the operating system.

Any function, including main, can be compared to a black box that takes in input, processes it,

and spits out the result. However, we may also have a function that does not take any inputs at

all or that does not return anything at all.

While using functions, we will use the terminology as follows.

 A function, 𝑓, that calls another function 𝑔, is known as the calling function and 𝑔 is

known as the called function.

 The inputs that the function takes are known as arguments or parameters.

 When a called function returns some result back to the calling function, it is said to

return that result.

 The calling function may or may not pass parameters to the called function. If the called

function accepts the arguments, the calling function will pass parameters, otherwise, it

will not do so.

 Function declaration is a declaration statement that identifies a function with its name,

a list of arguments that it accepts, and the type of data it returns.

 Function definition consists of a function header that identifies the function, followed

by the body of the function containing the executable code for that function

2.4. Function Declaration or Function Prototype:

Before using the function, the compiler must know about the number and types of parameters

that the function expects to receive and the data type of value that it will return to the calling

program. For this, we need to declare a function (or give the function prototype). Placing the

function declaration statement prior to its use enables the compiler to make a check on the

arguments used while calling that function.

The general format for declaring a function that accepts some arguments and returns some

value as result can be given as follows:

return_data_type function_name (data_type variable1, data_type variable2,..);

We must note the following here.

22

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 function_name is a valid name for the function. Naming a function follows the same

rules that naming variables follows. A function should have a meaningful name that

must clarify the task

Programming

 Tip: Not placing a semicolon after the function declaration is an error.

that it will perform. The function name is used to call it for execution in a program. Every

function must have a different name that indicates the particular job that the function does.

 return_data_type specifies the data type of the value that will be returned to the calling

function as a result of the processing performed by the called function.

 data_type variable1, data_type variable2, ... is a list of variables of specified data types.

These variables are passed from the calling function to the called function. They are

also known as arguments or parameters that the called function accept to perform its

task. Table 2.1 shows examples of valid function declarations in C + +.

Table 2.1 Valid function declarations

The following are the key points to remember about function declaration:

23

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 After the declaration of every function, there is a semicolon. If the semicolon is

missing, the compiler will generate an error message.

Programming

Tip: Though optional, use argument names in the function declaration.

 The name of the function is global. Therefore, the declared function can be called

from any point in the program.

 Use of argument names in the function declaration statement is optional. Both

declaration statements are valid in C + +.

int func(int, char, float); or

int func(int num, char ch, float fnum);

 No function can be declared within the body of another function.

 A function having void as its return type cannot return any value.

 A function having void as its parameter list cannot accept any value. A function is

declared as

void print(void); OR void print()

does not accept any input/arguments from the calling function.

 If the function declaration does not specify any return type, by default, the function

returns an integer value. Therefore, when a function is declared as

sum(int a, int b);

the function sum accepts two integer values from the calling function and, in turn, returns an

integer value to the caller.

 Some compilers make it compulsory to declare the function before its usage while

other compilers make it optional. However, it is always good to declare the function

before its usage as it allows error checking on the arguments in the function call.

2.5 Function Definition:

When a function is defined, space is allocated for that function in the memory. A function

definition comprises two parts as follows:

Programming

Tip: It is an error to place a semicolon after the function header in the function definition.

Function header

 Function body

24

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

The syntax of a function definition can be given as

return_data_type function_name(data_type variable1, data_type variable2,..)

{

 statements

 -m.......

 return(variable);

}

Note The number of arguments and the order of arguments in the function header must be

same as that given in function declaration statement.

Programming

Tip: The parameter list in the function definition as well as function declaration must match

with each other.

Programming

Tip: A function can be defined either before or after the main().

While return_data_type function_name(data_type variable1, data_type variable2,..) are known

as the function header, the rest of the portion comprising program statements within { } is the

function body which contains the code to perform the specific task.

The function header is same as that of function declaration. The only difference between the

two terms is that a function header is not followed by a semicolon. The list of variables in the

function header is known as the formal parameter list. The parameter list may have zero or

more parameters of any data type. The function body contains instructions to perform the

desired computation in a function.

The function definition itself can act as an implicit function declaration. Therefore, the

programmer may skip the function declaration statement if the function is defined before being

used.

Note The argument names in the function declaration and function definition need not be the

same. However, the data types of the arguments must match with that specified in function

declaration and function definition.

2.6. Call-by-Reference:

When the calling function passes arguments to the called function using call-by-value method,

the only way to return the modified value of the argument to the caller is by using the return

statement explicitly. A better option when a function can modify the value of the argument is

25

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

to pass arguments using call-by-reference technique. In call-by-reference, we declare the

function parameters as references rather than normal variables. When this is done, any changes

made by the function to the arguments it received are visible by the calling program.

To indicate that an argument is passed using call-by-reference, an ampersand sign (8) is placed

after the type in the parameter list. In this way, changes made to that parameter in the called

function body will be reflected in its value in the calling program.

Hence, in a call-by-reference method, a function receives an implicit reference to the argument,

rather than a copy of its value. Therefore, the function can modify the value of the variable and

that change will be reflected in the calling function as well. The following program explains

this concept.

Note

The reference type parameters are accessed in the same way as other normal variables are

accessed.

Example 2.1: Program that uses call-by-reference method to pass arguments to the

called function

using namespace std;

#include<iostream>

void add(int &n);

int main()

{ int num = 2;

 cout<<"\n The value of num before calling the function = "<<num;

 add(num);

 cout<<"\n The value of num after calling the function = "<<num;

}

void add(int &n)

{ n=n+10;

 cout<<"\n The value of num in the called function = "<<n;

}

OUTPUT

The value of num before calling the function =2

The value of num in the called function = 12

26

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

The value of num after calling the function = 12

Pros and Cons of Call-by-Reference

The advantages of using call-by-reference technique of passing arguments include the

following:

 Since arguments are not copied into new variables, it provides greater time and space

efficiency

 The function can change the value of the argument and the change is reflected in the

caller.

 A function can return only one value. In case, we need to return multiple values, pass

those arguments by reference, so that modified values are visible in the calling

function.

Note We will make a comparison between call-by-reference and call-by-address in Chapter 7,

where we will read about pointer variables and using address in detail.

Example 2.2:

Program to swap the values of two variables using call-by-value and call-by-reference

mechanisms. Note the value of integers in the calling function and the called function

using namespace std;

#include<iostream>

void swap_call_by_val(int, int);

void swap_call_by_add(int *, int *);

void swap_call_by_ref(int &, int &);

int main()

{ int a=1,b=2,c=3,d=4;

 cout<<"\n In main(), a = "<<a<<" and b = "<<<b;

 swap_call_by_val(a, b);

 cout<<"\n In main(), a = "<<a<<" and b = "<<b;

 cout<<"\n\n In main(), c= "<<c<<" and d = "<<d;

 swap_call_by_add(&c, &d);

 cout<<"\n In main(), c="<<c<<<" and d= "<<d;

 swap_call_by_ref(c, d);

 cout<<"\n In main(), c= "<<c<<" and d= "<<d;

27

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

}

void swap_call_by_val(int a, int b)

{ int temp;

 temp = a;

 a = b;

 b = temp;

 cout<<"\n In function (Call-By-Value Method) - a = "<<a<<" and b = "<<b;

}

void swap_call_by_add(int *c, int *d)

{ int temp;

 temp = *c; // *operator used to refer to the value

 *c=*d;

 *d = temp;

 cout<<"\n In function (Call-By-Address Method) - c="<<*C<<" and d= "<<*d;

}

void swap_call_by_ref(int &c, int &d)

{

 int temp;

 temp = c;

 c=d;

 d = temp;

 cout<<"\n In function (Call-By-Reference Method) - c = "<<c<<" and d = "<<d;

}

OUTPUT

In main(), 𝑎 = 1 and 𝑏 = 2

In function (Call-By-Value Method) −a = 2 and b = 1

In main(), 𝑎 = 1 and 𝑏 = 2

In main(), c=3 and d=4

In function (Call-By-Reference Method) - c=4 and d=3

In main(), c=4 and d=3

In main(), c=3 and d=4

28

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

In function (Call-By-Address Method) - c=4 and d=3

In main(), c=4 and d=3

Program 2.1: Write a program to find the biggest of three integers using functions.

using namespace std;

#include<iostream>

int larger(int a, int b, intc);

int main()

{ int num1, num2, num3, large;

 cout<<"\n Enter the three numbers : ";

 cin>>num1>>num2>>num3;

 large = larger(num1, num2, num3);

 cout<<"\n Largest number = "<<large;

}

int larger(int a, int b, int c)

{ if(a>b && a>c)

 return a;

 if(b>a && b>c)

 return b;

 else

 return c;

}

OUTPUT

Enter the three numbers : 45 23 34

Largest number = 45

Program 2.2: Write a program to calculate the area of a circle using functions.

using namespace std;

#include<iostream>

float cal_area(float 𝑟);

int main()

{ float area, radius;

cout<<" $$ n Enter the radius of the circle : ";

cin>>radius;

29

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

area = cal_area(radius);

cout. precision(2);

cout<<" $$ n Area of the circle with radius "<<radius<<" = "<< area;

}

float cal_area(float radius)

{ return (3.14 * radius * radius);

}

OUTPUT

Enter the radius of the circle : 7

Area of the circle with radius 7 = 153.83

Program 2.3:

Write a program to find whether a number is even or odd using functions.

using namespace std;

#include<iostream>

int evenodd(int);

int main()

{ int num, flag;

 cout<<"\n Enter the number : ";

 cin>>num;

 flag = evenodd(num);

 if (flag == 1)

 cout<<"\n"<<num<<" is EVEN";

 else

 cout<<"\n"<<num<<" is ODD";

}

int evenodd(int a)

{ if(a%2 == 0)

 return 1;

 else

 return 0;

}

OUTPUT

30

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Enter the number : 42

EVEN

Program 2.4:

Write a program to convert time into minutes.

using namespace std;

#include<iostream>

int convert_time_in_mins(int hrs, int minutes);

main()

f int hrs, minutes, total_mins;

cout<<" ln Enter the hours and minutes : ";

cin>>hrs>>minutes;

total_mins = convert_time_in_mins(hrs, minutes);

cout<<"\n Total minutes = "<<total_mins;

}

int convert_time_in_mins(int hrs, int minutes)

{ int mins;

mins = hrs*60 + minutes;

return mins;

}

OUTPUT

Enter the hours and minutes : 430

Total minutes = 270

Program 2.5:

Write a program to calculate 𝑃(𝑛/𝑟).

using namespace std;

#include<iostream>

int Fact(int num);

main()

{ int 𝑛, 𝑟;

float result;

cout <<" ∖ 𝑛 Enter the value of 𝑛 and 𝑟: ";

cin>>n>>r;

31

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

result = (float)Fact (𝑛)/ Fact (𝑛 − 𝑟);

cout<<" ∖ 𝑛𝑃(𝑛/𝑟) − 𝑃(" ≪ 𝑛 ≪ ")/(" ≪ 𝑟 ≪ ") = " ≪ result;

}

int Fact(int num)

{ int 𝑓 = 1, 𝑖;

for (𝑖 = num; 𝑖 >= 1; 𝑖 − −)

𝑓 = 𝑓 ∗ 𝑖;

 return f;

}

OUTPUT

Enter the value of }n\mathrm{ and }r:4

P(n/r)-P(4)/(2)=12.00

Program 2.6:

 Write a program to calculate C(n/r).

using namespace std;

#include<iostream>

int Fact(int num)

main()

{ int n, r;

 float result;

 cout<<"\n Enter the value of n and r : ";

 cin>>n>>r;

 result =(float)Fact(n)/(Fact(r)*Fact (n-r));

 cout.precision(2);

 cout<<"|n C(n/r) - C("<<n<<"/"<<r<<") = "<<result;

}

int Fact(int num)

{ int f=1,i;

 for(i=num;i>= 1;i--)

 f=f*i;

 return f;

}

32

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

OUTPUT

Enter the value of }n\mathrm{ and }r:4

C(n/r)-C(4)/(4)=6.00

Program 2.7:

Write a program to sum the series 1/1! +1/2!+1/3!++1/n!}\mathrm{ .

using namespace std;

#include<iostream>

int Fact(int);

main()

{ int n, f, i;

 float result = 0.0;

 cout<<"\n Enter the value of n : ";

 cin>>n;

 for(i=1;i<< n;i++)

 { f=Fact(i);

 result += 1/(float)f;

 }

 cout<<"\n The sum of the series 1/1!+1/2!+1/3!.. = "<< result;

}

int Fact(int num)

{ int f=1,i;

 for(i=num;i>= 1;i--)

 f=f*i;

 return f;

}

OUTPUT

Enter the value of $n: 5$

The sum of the series $1 / 1!+1 / 2!+1 / 3!\ldots=1.716667$

Program 2.8:

 Write a program to sum the series 1/1!+4/2!+27/3! +

using namespace std;

#include<iostream>

33

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

#include<math.h>

int Fact(int);

main()

{ int n, i, NUM, DENO;

 float sum = 0.0;

 cout<<"\n Enter the value of n : ";

 cin>>n;

 for(i=1;i<= n;i++)

 { NUM = pow(i,i);

 DENO = Fact(i);

 sum t= (float)NUM/DENO;

 }

 cout<<"\n 1/1! + 4/2! + 27/3! + == "<<sum;

}

int Fact(int n)

{ int f=1, i;

 for(i=n;i>=1;i--)

 f=f*i;

 return f;

}

OUTPUT

Enter the value of n : 5

1/1!+4/2!+27/3!+=44.208332

2.7. Return By Reference:

Similar to call-by-reference, a C++ program can also return a value by reference. This allows

a function to be used on the left side of an assignment statement.

The following are the key points to remember while returning by reference:

 The function should not return a local variable by reference as it will go out of scope

immediately as soon as the function ends. The code given below illustrates this concept.

Though the compiler will not generate any error but will definitely issue a warning

stating "reference to local variable ' 𝑥 ' returned"

34

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

int &my_func(int num)

{ int x = num*2;

return x; //x is a local variable, you should not return it as reference

}

The function may return a reference to a static variable. Therefore, the code given here is

permissible in C + +.

#include<iostream>

#include<cstring>

using namespace std;

int &my_func()

{ static int x=10;

return x;

}

main()

{

 int x;

 x = my_func();

 cout<<x;

}

OUTPUT

10

 Variables passed by reference can be returned by reference.

 Return by reference is extensively used to return structure variables and objects of

classes.

Note

Values returned by reference must be variables. Returning a reference to a literal or an

expression is not allowed.

Example 2.3.

 To return value using reference

using namespace std;

#include<iostream>

35

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

int &larger(int &x, int &y)

{ if(x>y)

 return x;

 else

 return y;

}

main()

{ int num1, num2, large;

 cout<<"\n Enter two numbers : ";

 cin>>num1>>num2;

 cout<<"\n Two numbers are : "<<num1<<" "<<num2;

 large = larger(num1, num2);

 cout<<"\n Large = "<<large;

 larger(num1, num2) = -1;

 cout<<"\n Two numbers are : "<<num1<<" "<<num2;

}

OUTPUT

Enter two numbers : 52

Two numbers are : 52

Large = 5

Two numbers are : -12

Explanation: In the given here, variables num 1 and num2 are passed by reference to

greater(). The function will make a reference to variable x or y whichever is greater and

return it to the caller. When we write

greater(num1, num2) = - 1;

the statement will assign -1 to the variable having greater value. Therefore, the output is

obtained.

36

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.8. Inline Functions:

C++ provides a very useful feature of inline functions that is commonly used with classes. The

major difference between an ordinary function and an inline function is that when an inline

function is called, the compiler places a copy of its code at each point of call. As in case of an

ordinary function, the compiler does not have to jump to the called function. This saves the

function call overhead and results in faster execution of the code. We can make a function

inline by taking caring of two aspects as follows.

 First, write the keyword inline before the function name.

 Second, define that function before any calls are made to it.

However, the programmer must not forget that keyword inline just makes a request to the

compiler to make the function inline (and place its code at each point of call), the compiler may

ignore the request if the function has too many lines.

Note Inline functions work best with short functions that are executed frequently.

Let us see two programs that use the concept of inline functions.

Example 2.4: To find the larger number using an inline function

Programming

Tip: main()

cannot be used

as an inline

function.

using namespace std;

#include<iostream>

inline int larger(int }x\mathrm{ , int }y\mathrm{) // Function definition

{ return (x>y)? x : y; // Function returning larger of the two nos

}

int main()

{ int num1, num2;

 cout << "\n Enter two numbers: ";

 cin>>num1>>num2;

 cout<<"\n The larger number is : "<<larger(num1,num2); // Function call

 }

37

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

OUTPUT

Enter two numbers : 59

The larger number is : 9

Example 2.5: To find square of a number using inline function

using namespace std;

#include<iostream>

inline int sqr(int x)

{return (x*x);

}

int main()

{ int num;

 cout<<"\n Enter a number : ";

 cin>>num;

 cout<<"\n Square of "<<num<<" = "<<sqr(num);

}

OUTPUT

Enter a number : }

Square of 9=81

2.8.1 Advantages and Disadvantages of Inline Functions

The advantages of using inline function are as follows:

 An inline function generates faster code as it saves the time required to execute

function calls.

 Small inline functions (three lines or less) create less code than the equivalent function

call as the compiler does not have to generate code to handle function arguments and a

return value.

 Inline functions are subject to code optimizations that are usually not available to

normal functions as the compiler does not perform inter-procedural optimizations.

 Inline function avoids function call overhead. As a result, we need to save variables and

other program parameters on the system stack.

 Since there are no function calls, the overhead of returning from a function is also

avoided.

38

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 It allows the compiler to apply intra-procedural optimization

The disadvantages of using inline function are as follows:

 Size of the program increases.

 Large programs may take longer time to be executed.

 At times, the program may not fit in the cache memory.

 There may be a problem in making efficient use of CPU registers if the inline function

has many register variables.

 If the code of the inline function is modified, the entire program needs to be re-

compiled.

 Inline functions should not be used for designing embedded systems due to memory

size constraints.

2.8.2 Comparison of Inline Functions with Macros:

The concept of inline functions is similar to that of macros (refer Annexure 5). However,

inline functions have a good blend of flexibility and power offered by macros as well as an

ordinary function. Therefore, inline functions should be preferred over macros that were

extensively used in C language due to the following reasons:

 Macro invocations skip the job of type checking; this is a must-to-do work in function

calls.

 Macros cannot return a value while a function can return a value.

 Macros use mere textual substitution which can give unintended results due to

inaccurate reevaluation of arguments and order of operations.

 Debugging of compiler errors in case of macros is more difficult than debugging

functions.

 All constructs cannot be expressed using macros; however, with functions, they can

be expressed with ease.

 Macros have a slightly difficult syntax while the syntax of writing function is similar

to that of a normal function.

Example 2.6: To show why the use of inline function is better than macros

using namespace std;

#include<iostream>

39

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

#define SQUARE (x) x * x

inline int sqr(int }x\mathrm{)

{return (x*x);

}

int main()

{ int num, n;

 cout<<"\n Enter a number : ";

 cín>>num;

 n= num;

 cout<<"\n square of "<<num<<" using Inline function = "<<sqr(++num);

 cout<<"\n Square of "<<n<<" using Macros = "<<SQUARE(++n);

}

OUTPUT

Enter a number : 6

Square of }7\mathrm{ using Inline function = 49

Square of 8 using Macros = 64

Explanation:

 In this program, you will find that due to wrong evaluation of arguments, macros give wrong

results.

Inline functions cannot be used with the following:

 Recursive functions

 Functions having static variables

 Functions that return a value and also have go to statements, switch statements, or

iterative statements

 Functions that do not return a value but have a return statement

2.9. Default Arguments:

Till now we have studied that when a function is called, all its arguments must be passed to it

in totality. However, C + + gives little freedom to programmers by providing default

arguments. When a function is specified with default arguments, the function can be called

with missing arguments. When a function is called with a missing argument, the function

40

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

assigns a default value to the parameter. This default value is specified by the programmer in

the function declaration statement.

While specifying the default values during function declaration, the programmer must keep the

following in mind:

 Only trailing arguments can have default values; therefore, specify them from right to

left.

 No argument specified in the middle can have default values.

Let us analyse some function declarations with default arguments to understand which

declaration is correct.

int my_func(int a, int b, int c=10); //Correct

int my_func(int }a\mathrm{ , int }b=5\mathrm{ , int }c=10); //Correc

int my_func(int a = 1, int b = 5, int c = 10); //Correct

int my_func(int }a\mathrm{ , int }b=5\mathrm{ , int c); //Wrong

Note

Default arguments are used when arguments usually have the same value (with or without

some exceptional cases).

Some example codes which demonstrate the usage of default arguments are as follows.

Programming Tip: Arguments explicitly specified in function call override the default

values given during function declaration.

Program 2.9:

Write a program to calculate the volume of a cuboid using default arguments.

using namespace std;

#include<iostream>

int Volume (int length, int width = 3, int height = 4);

int main()

{cout <<" ∣ n Volume = " ≪ Volume (4, 6, 2);

cout ≪ " ∖ 𝑛 ∖ 𝑛 Volume = " ≪ Volume (4,6);

cout ≪ " ∖ 𝑛 ∖ 𝑛 Volume = " ≪ Volume (4);

}

int Volume(int length, int width, int height)

41

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

{ cout ≪ " ln Length = " ≪ length ≪ " Width = " ≪ width ≪ " and Height = "<<height;

return length * width * height;

}

OUTPUT

Length = 4 Width = 6 and Height = 2

Volume = 48

Length = 4 Width = 6 and Height = 4

Volume = 96

Length = 4 Width = 3 and Height = 4

Volume = 48

Program 4.10 Write a program to calculate simple interest. Suppose the customer is a senior

citizen. He is being offered 12 per cent rate of interest; for all other customers, the ROI is 10

per cent.

using namespace std;

#include<iostream>

float interest(float principle, int years, int r = 10);

main()

{ float p;

 int n;

 char senior_citizen;

 cout<<"\n Enter the principal and number of years : ";

 cin>>p>>n;

 cout<<"\n Is the customer a senior citizen? (y/n) ";

 cin>>senior_citizen;

 if(senior_citizen == ' }\mp@subsup{y}{}{\prime}\mathrm{ ')

 cout<<"\n Interest = "<<interest(}p,n,12)

 else

 cout<<"\n Interest = "<<interest(p,n);

}

float interest(float principle, int years, int r)

{ return(principle*years*r/100);

42

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

}

OUTPUT

Enter the principal and number of years : 100005

Is the customer a senior citizen? (𝑦/𝑛)𝑦

Interest = 6000

Program 4.11 Write a program to print the following pattern using default arguments.

%%%%%%

^^^^^^^^

^^^^^^^^^^^^^^

^^^^^^^^^^^^^^^^^^^^^

^^^^^^^^^^^^^^^^^^^^^

using namespace std;

#include<iostream>

void print(char c='%', int n=6, int r=1);

main()

{ char c;

 int num_rows, num_cols;

 cout<<"\n Enter the character, number of rows and columns : ";

 cin>>c>>num_rows>>num_cols;

 print();

 print(c);

 print(c,10);

 print(c,15,2);

}

void print(char c, int n, int r)

{ cout<<"\n";

 for(int i = 0;i< r ; i++)

 { cout<<"\n";

 for(int j=0;j<n;j++)

 cout<<c;

 }}

43

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.10 Passing Constants as Arguments:

When parameters are passed by reference parameter, the called function may intentionally or

inadvertently modify the actual parameters. However, at times, the programmer may strictly

want the actual parameters not to be modified by the called function. In such cases, a constant

parameter must be passed.

We have seen that pass by reference is a preferred technique of passing arguments to a

function due to performance reasons. Therefore, using the const keyword allows

programmers to achieve performance benefits while ensuring that the actual parameter is not

modified. The following program explains this concept.

Example 2.7:

To demonstrates the use of a constant argument

using namespace std;

#include<iostream>

void add_2(int const &x)

{ x = x + 2; // ERROR, cannot modify a constant

 cout<<"\n The numbers is now: "<<x;

}

main ()

{int num1;

 cout<<"\n Enter a number: ";

 cin>>num1;

 add_2(num1);

}

OUTPUT

Error

Explanation:

The program given here will not execute and give a compiler error as the function cannot

modify a constant. The function can use it but cannot alter it.

44

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.11. Recursion versus Iteration:

Recursion is more of a top-down approach to problem solving in which the original problem

is divided into smaller sub-problems. On the contrary, iteration follows a bottom-up approach

that begins with what is known and then constructing the solution step by step.

Recursion is an excellent way of solving complex problems especially when the problem can

be defined in recursive terms. For such problems, a recursive code can be written and modified

in a much simpler and clearer manner.

However, recursive solutions are not always the best solutions. In some cases, recursive

programs may require substantial amount of run-time overhead. Therefore, when implementing

a recursive solution, there is a trade-off involved between the time spent in constructing and

maintaining the program and the cost incurred in running time and memory space required for

the execution of the program.

Whenever, a recursive function requires some amount of overhead in the form of a run-time

stack is always involved. Before jumping to the function with a smaller parameter, the original

parameters, the local variables, and the return address of the calling function are all stored on

the system stack. Therefore, while using recursion, a lot of time is needed to first push all the

information on the stack when the function is called and then, time is again involved in

retrieving the information stored on the stack once the control passes back to the calling

function.

To conclude, one must use recursion only to find solution to a problem for which no obvious

iterative solution is known. To summarize the concept of recursion, let us briefly discuss the

pros and cons of recursion.

Pros and Cons of using a Recursive Program

The benefits of using a recursive program are as follows:

 Recursive solutions often tend to be shorter and simpler than non-recursive ones.

 Code is clearer and easier to use.

 Recursion represents like the original formula to solve a problem.

45

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 Follows a divide and conquer technique to solve problems.

 In some (limited) instances, recursion may be more efficient.

The drawbacks of using a recursive program are as follows:

 For some programmers and readers, recursion is a difficult concept.

 Recursion is implemented using system stack. If the stack space on the system is

limited, recursion to a deeper level will be difficult to implement.

 Aborting a recursive process in midstream is slow and sometimes nasty.

 Using a recursive function takes more memory and time to execute as compared to its

non-recursive counterpart.

 It is difficult to find bugs, particularly, when using global variables

Therefore, the benefits of recursion pay-off for the extra overhead involved in terms of time

and space required.

2.12 Function Overloading:

Function overloading, also known as method overloading, is a feature in C + + that allows

creation of several methods with the same name but with different parameters. For example,

print(), print(int), and print("He110") are overloaded methods. While calling print(), no

arguments are passed to the function; however, when calling print (int) and print("Hello"), an

integer and a string arguments are passed to the called function.

Note Function overloading allows one function to perform different tasks.

Function overloading is a type of polymorphism. Basically, there are two types of polymor-

phism-compile time (or static) polymorphism and run-time (or dynamic) polymorphism.

Function

overloading falls in the category of static polymorphism which calls a function using the best

match technique or overload resolution.

According to this technique, the compiler compares the arguments in terms of number and

type used in function call with the parameters specified in function definition to determine the

most appropriate definition to use.

46

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.12.1 Matching Function Calls with Overloaded Functions

When an overloaded function is called, one of the following cases occurs:

Case 1: A direct match is found, and there is no confusion in calling the appropriate overloaded

function.

Case 2: If a match is not found, a linker error will be generated. However, if a direct match is

not found, then, at first, the compiler will try to find a match through the type conversion or

type casting. For example, char, unsigned char, and short are promoted to an int; unsigned short

can be promoted to int or unsigned int; float is promoted to double; and enum is promoted to

int. Hence, the following function call will be matched with the given declaration.

void print(int); // Function declaration

print('R'); // Function call

Note

To find a suitable match, C++ compiler also tries user-defined conversions, which we will

discuss later in this book. If nothing is possible, then a no match, linker error is generated.

Case 3: If an ambiguous match is found, that is, when the arguments match more than one

overloaded function, a compiler error will be generated. This usually happens because all

standard conversions are treated equal. For example, consider the function declarations and

function call given here.

Example 2.8: To demonstrate the ambiguity in function call

using namespace std;

#include<iostream>

void print(int n){ cout<<n;}

void print(char c){ cout<<c; }

void print(float f) { cout<<f;}

main()

{ print(5); //Function call

 print((float)98.7);

 print('R');

47

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

}

OUTPUT

Error

Explanation: When you execute this code, you will get a compile time error as there two

function declarations are valid for print(5); the function call can invoke either int or float

version because all standard conversions are treated equal. Therefore, 5 can be treated as an

int as well as a float.

Note All floating literals are treated as double unless they have the ' 𝑓 ' suffix.

2.12.2 Key Points about Function Overloading

 In function overloading, there are multiple definitions for the same function name in

the same scope.

 The definitions of these functions vary according to the types and/or the number of

arguments in the argument list.

 Data type of the return value is not considered while writing overloaded functions

because the appropriate function is called at the compile time while the return value

will be obtained only when the function is called and executed.

Example 2.9: To compute the volume of different shapes using function overloading concept

using namespace std;

#include<iostream>

int volume(int side)

{ return side*side*side; // cube

}

float volume(float radius, float height)

{ return 3.14+radius*radius*height; //cylinder

}

long int volume(int length, int breadth, int height)

{ return length*breadth*height; //cuboid

}

main()

48

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

{ int s,l,b,height;

 float r, h;

 cout<<"\n Enter the side of the cube : ";

 cin>>s;

 cout<<"\n volume of cube with side "<<s<<" = "<<volume(s);

 cout<<"\n \n\n Enter the radius and height of the cylinder : ";

 cin>>r>>h;

 cout<<"\n Volume of cylinder with radius "<<r<<" and height "<<h<<" = "<<volume(r,h);

 cout<<"\n Enter the length, breadth and height of the cuboid : ";

 cin>>l>>b>>height;

 cout<<"\n Volume of cuboid with length "<<l<<" breadth "<<b<<" and height

 "<<height<<" = "<<volume(l,b,height);

}

OUTPUT

Enter the side of the cube : }

Volume of cube with side 3=27

Enter the radius and height of the cylinder : 3 4

Volume of cylinder with radius 3 and height 4=39.13

Enter the length, breadth and height of the cuboid: : 3 4";

volume of cuboid with length 2 breadth 3 and height 4=24

Note Function overloading is a form of compile time or static polymorphism (to be discussed

in detail in Inheritance).

Program 2.10: Write a program to display values of different data types using compile time

polymorphism.

using namespace std;

#include<iostream>

void print(float num)

{ cout<<"\n The number is: "<<num;

}

void print(char str[])

49

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

{ cout<<"\n The string is : "<<str;

}

main()

{

 print(9);

 print(3.78);

 print("Hello");

}

OUTPUT

The number is : }

The number is : 3.78

The string is : Hello

Program 2.11: Write a program to add two values of different data types using static

polymorphism.

#includesstring.h>

using namespace std;

#include<iostream>

int add(int 𝑎, int 𝑏)

{ return 𝑎 + 𝑏;

}

double add(double 𝑎, float 𝑏)

{ return 𝑎 + 𝑏;

}

void add(string str 1 , string str2)

{

cout <<" ∖ 𝑛 The concatenated string is : "<<(str1 + str2);

}

main()

{

cout<<" ∖ 𝑛5 + 7 = " ≪ add(5,7);

cout<<"\n 123.678 + 25.97 = "<<add(123.678, 25.97);

50

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

add("Oxford", "University");

}

OUTPUT

5 + 7 = 12

123.678 + 25.97 = 149.647

The concatenated string is: OxfordUniversity

Program 2.12: Write a program that finds the absolute value of a number.

#includesstring.h>

using namespace std;

int abs(int 𝑛)

{ return 𝑛 > 𝜃 ? 𝑛:−𝑛;

}

double abs(double 𝑛)

{ return 𝑛 > 0 ? 𝑛 : −𝑛;

}

main()

§ cout<<"\n Absolute value of 1234 = "<<abs(-1234);

cout<<" ∖ n Absolute value of 1234.5678 = "<<abs(1234.5678);

}

OUTPUT

Absolute value of 1234=1234

Absolute value of 1234.5678=1234.5678

2.12.3 Functions that Cannot be Overloaded

 Functions that differ only in the return type. For example, the program given here will

give compile time error.

using namespace std;

#include<iostream>

int my_func() {return 1; }

char my_func() { return 'E'; }

main()

51

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

{ int num = my_func();

 char c = my_func();

}

 Parameter declarations that differ only in a pointer * versus an array [] are equivalent.

A program with the following declarations will give a compilation error as both

declarations are equivalent. The reason why they are equivalent will be clear in the

chapter on Pointers.

int my_func(int *ptr);

int my_func(int ptr[]);

 If parameters in two functions differ only in the presence or absence of const and/or

volatile, then those functions are considered to be equivalent. For example, the

program having following declarations will not compile.

int my_func(int n);

int my_func(const int n;

 Using typedef does not introduce a new type, therefore, the following two function

declarations are equivalent and this cannot be overloaded. (Use of typedef will be

studied in chapter on Structures).

typedef int integer;

int my_func(int n);

int my_func(integer n;

 Function declarations that differ only in their default arguments are equivalent.

Therefore, the program having function declarations given below will not compile.

int my_func(int n);

int my_func(int n=10);

52

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 Function declarations that differ only in a reference parameter and a normal parameter

cannot be overloaded. Therefore, the program having function declarations given here

will not compile.

int my_func(int n);

int my_func(int &n);

 2.13. Specifying a Class:

A class is the basic mechanism to provide data encapsulation. Data encapsulation is an impor-

tant feature of object-oriented programming paradigm. It binds data and member functions in

a single entity in such a way that data can be manipulated only through the functions defined

in that class. When defining a class, we are actually creating a new user-defined data type which

will be treated in the same way as other built-in data types.

 The process of specifying a class consists of two steps-class declaration and function

 definitions (Fig. 2.5). While class declaration specifies the type and scope of its

Figure 2.5. Class specification

members-private, public, or protected, function definition specifies how functions perform

their intended task.

2.13.1 Class Declaration:

The syntax for class declaration is given in Fig. 2.6(a) and a sample class declaration is

shown in Fig. 2.6(b).

53

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Figure 2.6 (a) Syntax of class declaration (b) Sample class

The keyword class denotes that the class name that follows is user-defined data type. The body

of the class is enclosed within curly braces and terminated with a semicolon, as in structures.

Data members and functions are declared within the body of the class. These data and functions

form the members of the class.

Data and functions are grouped under two sections-private and public. They are also called

visibility labels or access specifiers.

 Private

 All data members and member functions declared private can be accessed only from within the

class. They are strictly not accessible by any entity-function or class-outside the class in which

they have been declared. In C++, data hiding is implemented through the private visibility

label.

Public

Data and functions that are public can be accessed from outside the class.

By default, members of the class, both data and function, are private. If any visibility label is

missing, they are automatically treated as private members.

Note

A class having all its members as private is completely hidden from the outside world and

does not serve any purpose.

Figure 2.7. shows that private members of a class can be accessed from outside the class only

54

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

through the public member functions. Moreover, public data and public member functions

can be accessed from outside the class.

Figure 2.7 Accessing members of a class

 2.14. Function Definition:

Member functions can be defined either inside the class or outside the class as shown in Fig.

2.4. However, wherever they may be defined, they perform the same task.

Figure 2.8. Function definition

2.14.1.Defining a Function Inside the Class

In this method, function declaration or prototype is replaced with function definition inside the

class. Though it increases the execution speed of the program, it consumes more space. A

function defined inside the class is treated as an inline function by default, provided they do

not fall into the restricted cate- gory of inline functions.

Note:Functions that cannot be inline include functions having loop, switch, or go to statements,

 static variables, or recursive code.

As a good practice, you must define only small functions inside the class. Let us try to define

55

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

the get_data() inside the class.

 In the code, get_data() is an inline member function of the class rectangle. This function is

used to read the values of private data members of the class from the users.

2.14.2.Defining a Function Outside the Class

Member functions defined outside the class are defined in the same way as other normal

functions. However, the only difference between a member function and a normal function is

that a member function is specified using a membership identity label in the function header.

The identity label informs the compiler about the class to which the function belongs to.

Figure 2.9.shows the general form of a normal function and that of a class member function

defined outside the class.

class_name:: and function_name tell the compiler that scope of the function is restricted to the

class_name. Hence, the name of the :: operator is scope resolution operator. The scope

resolution operator identifies and specifies the context to which an identifier refers. The

importance of the :: is even more prominent in the following cases:

• When different classes in the same program have functions with the same name. In this

case, the :: operator will tell the compiler which function belongs to which class.

• To restrict the non-member functions of the class to use its private members.

• Allows a member function of the class to call another member function directly without

using the dot operator.

56

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Figure 2.9 (a) Normal function definition

(b) Member function definition outside the class

Following is an example for defining the function (area()) outside the class:

float Rectangle :: area(void)

{ return length breadth;

}

Defining a member function outside the class reduces the execution speed but takes more

space.

 2.15. Making a Member Function Inline:

 We have seen that member functions can be either defined inside the class or outside the class.

While defining a function inside the class makes the code shorter, as a good programming

practice, member functions must be defined outside the class. This will not only enhance clarity

but will also result in separating the details of implementation from the class definition which

is a basic objective concept of object-oriented programming.

However, programmers do not want to compromise speed for code clarity. We have seen that

all functions defined inside the class are treated as inline by default. Therefore, the overhead

of function call is completely avoided and the code executes faster. However, to gain the same

57

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

benefits while separating the implementation details, C++ enables programmers to make a

member function defined outside the class an inline. This can be done by using the keyword

inline in the header line of function definition. For example, consider the code given here which

makes show_data(), a func- tion defined outside the class as an inline function.

 2. 16. Nested Member Functions:

We have learnt that only an object of a class can call any member function of that class using

the dot operator. However, when we use nested functions-a function inside another function-

we do not need the object name. A member function can directly call another function of that

class. For example,

In this example, data members of the class are directly accessible by the member functions.

Member functions do not need the dot operator to use the data members. Similarly, when we

call a member function from within another member function, we do not need the name of the

object or the dot operator. The member function can be directly called by using its name along

with arguments, if any.

58

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

2.17. Memory Allocation for Class and Objects:

Before learning how memory is allocated to objects, let us recapitulate some

important points about objects.

 An object is an instance of a class.

 Every object is identifiable.

 Objects communicate with classes through passing messages known as

function calls.

 Every object is defined by a state or value of variables.

 The state of the object can be changed by one or more operation

performed by member function(s) of that class.

 Memory for a class is allocated only when one or more objects of that

class is created.

The last point is only partly true because when a class is specified, memory for member

functions of class is allocated. When one or more objects are created, separate chunks of

memory for storing data members are allocated to each object as shown in Fig. 9.6. This type

of memory allocation is quite justified because while each object has a different set of values

for its data members, they execute the same piece of function code. Hence, it is better to store

function code in one place and let all the objects of that class share the function code.

Note

Memory for member functions is allocated only once when the class is defined. Therefore, a

single copy of member function is shared among all objects.

 Figure 2.10. Objects sharing functions but having their own data

2.18. Static Member Functions:

C++ not only allows data members of a class to be static but also supports static member functions.

Any static member-whether data or function is allocated to memory only once and is not a part of

any object but is shared by all the objects of that class. Additionally, a static member function has

the following features:

 It can access only the static members-data and/or functions-declared in the same

59

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

class.

 It cannot access non-static members because they belong to an object but static

functions have no object to work with.

 Since it is not a part of any object, it is called using the class name and the scope

resolution operator.

 As static member functions are not attached to an object, the this pointer does not

work on them.

 A static member function cannot be declared as virtual function.

 A static member function cannot be declared with const, volatile type qualifiers.

 Don't worry if last three points are not clear. You will understand these concepts when we

will deal with them in detail later in this book. In this chapter, we take a small example that

makes use of static member function and is usually implemented in solutions designed for

real-world problems. The function is used to automatically generate the next ID.

Note Static and non-static member functions in the same class with same names and same

number and types of arguments are not allowed in C++. Therefore, static void print (float); and

void print(float) is illegal.

Example 2.10. Static member function

60

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

 The program is used to automatically generate the next, unique identification number. Every

time the static function is called, it increments the value of static variable by 1. In this

program, we have not made any object of the class. This is because our class has only one

member function and that is static. Static member functions are not invoked in conjunction

with objects. They are called using the class name and the scope resolution operator.

2.19. Array of Objects:

Just as we have arrays of basic data types, C++ allows programmers to create arrays of user-

defined data types as well. Therefore, it is possible to make an array of class data type or array

of objects. They are usually defined to handle a group of objects that reside in a contiguous

memory location. For example, there is not one student in a class, rather a class has n number

of students. Therefore, we can declare an array of class student by simple writing

student s[20]; // assuming there are 20 students in a class.

When this statement gets executed, the compiler will set aside memory for storing details of

20 stu- dents. This means that in addition to the space required by member functions, 20*

sizeof(student) bytes of consecutive memory locations will be reserved for objects at the

compile time.

An array of objects uses the same concepts as that of arrays of other data types. An individual

object of the array of objects is referenced by using an index, and the particular member is

accessed using the dot operator. Therefore, if we write,

s[i].get_data()

then the statement when executed will take the details of the ith student.

2.20. Objects as Function Arguments

Similar to variables, objects can also be passed as arguments to functions. Similar to basic data

type arguments, objects can also be passed to functions in the following three ways:

Pass-by-value In this technique, a copy of the actual object is created and passed to the called

function. Therefore, the actual (object) and the formal (copy of object) arguments are stored at

dif- ferent memory locations. This means that any changes made in formal object will not be

reflected in the actual object.

Pass-by-reference In this method, the address of the object is implicitly passed to the called

function

Pass-by-address In this technique, the address of the object is explicitly passed to the called

function.

Since both pass by reference and pass-by-address techniques send the address of the actual object

to the called function, any changes made in the object are reflected to actual object. Moreover,

these two techniques must be preferred as they prevent duplication of object and hence, reduce

61

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

memory space requirements of a program. Example 9.5 demonstrates how an object is passed

as an argument using the three techniques discussed.

Example 2.11: Passing object as an argument

Explanation:

 In this program, only the value of object o2 has been entered by the user. Values of other

objects-01, 03, and 04-have been set through the o2 object using call-by-value, call- by-pointer,

and call-by-reference techniques, respectively. When we called the function through call-by-

reference, we had sent an extra argument that was absolutely not required. However, the

argument was just passed to have some small difference in the function header so that the

62

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

compiler does not generate any error. As per the rules of function overloading, reference

variables are not over- loaded. In simple terms, void set_data(myClass obj); is exactly same as

void set_data(myClass. &obj).

Note that as two functions with the same header are not allowed, just a small difference was

made in the function header to avoid any error.

 2.21.Friend Function:

Till now, we have studied that since data hiding is a fundamental concept of object-oriented

programming, a non-member function cannot access an object's private or protected data.

However, at times, this restriction makes the code too long and complex. So, to overcome this

problem, C++ supports the use of friend functions and friend classes.

A friend function of a class is a non-member function of the class that can access its private

and protected members (keyword protected will be discussed in Chapter 12 on Inheritance).

Just as we allow our friends to use our personal belongings, a friend function of a class is

allowed to access the members of that class. Friend functions help implement data

encapsulation in C++. They keep data of a class private from all external functions and classes

except from those that are explicitly declared as friend and thus permitted to access.

To declare an external function as a friend of the class, you must include function prototype in

the class definition. The prototype must be preceded with keyword friend.

The template to use a friend function can be given as follows:

class class_name

friend return_type

function_name(list of

arguments);

return_type function_name(list of arguments)

f

}

Following are some important points related to friend

function:

 Friend function is a normal external function that is given special access

privileges.

 A friend function is defined outside that class' scope. Therefore, they cannot be called

using theor->' operator. These operators are used only when they belong to some class.

 While the prototype for friend function is included in the class definition, it is not

considered to be a member function of that class.

 The friend declaration can be placed either in the private or in the public section.

 A friend function of the class can be member and friend of some other class.

 A function friend of one class can be friend of another class.

63

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 Since friend functions are non-members of the class, they do not require this

pointer.

 The keyword friend is placed only in the function declaration and not in the

function definition.

 A function can be declared as friend in any number of classes.

 A friend function can access the class's members directly using the object name and

dot operator followed by the specific member.

Friend functions are frequently used to perform operations that are conducted on two different

classes and thus require access to private or protected members of both classes.

Note While any non-member function of a class can access its public members, only the friend

functions can access its private and protected members.

Example 2.12: Friend function

Explanation:

In the program, the function convert meters () is an external function friend to class Distance. Now,

consider another program in which a function is friend to two different classes. The program

64

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

accepts objects of two classes and finds which one of them is larger.

65

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

In the program, note that we have written class 8; and then defined class B later in the program.

The statement class B; is called forward declaration and is used to tell the com- piler that

such a class will be defined later in the program. This is important because in class A, we

have a friend function which accepts objects of another class that has not yet been defined.

For the compiler to know B, we have to instruct the compiler that в is a class and declare it

before it is defined.

 2.22.Returning Objects:

C++ not only allows users to pass objects to functions as arguments but also allows functions

to return objects. The syntax is the same as that for a normal variable. You can return an object

using the following three methods:

Returning by value which makes a duplicate copy of the local object.

 Returning by using a reference to the object. In this way, the address of the object is passed

implicitly

 Returning by using the 'this pointer which explicitly sends the address of the object to the

calling function,

The function compares two complex numbers. In this code, there are two points to be noted:

 • if(real < c2.real), then c2 is returned using reference. Check the function header;

 the func- tion returns an object using an address either implicitly or explicitly. Since we are

writing return c2, it means that object c2 is being returned using a reference.

66

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

• If object cz is greater than c1 (the object that invoked the compare function), then c2 is

returned to the caller using reference in which the address of the object was implicitly passed.

However, if c1 is greater, then it is being returned using a special pointer called this pointer.

Exercises:

 1.What are nested member functions? Explain with the help of an example.

 2.Illustrate with an example how a function defined outside the class can be made. inline.

 3. When memory is allocated for class data members and member functions?

 4. What are static data members? Why are they needed?

 5. Write a short note on static member functions.

 6. What are static objects? Write a short code to explain their concept.

7. What are friend functions? Are they a threat to data hiding? How do they help in data

 encapsulation?

8. Illustrate the significance of bit fields with an example.

9. Explain the concept of dynamic memory allocation for array of objects with an example.

10. Differentiate between a structure and a class in C++.

67

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Unit III

Introduction, Constructors, Parameterized constructors, Multiple constructors in a class,

Constructors with default arguments, Dynamic initialization of objects, Copy constructor,

Constructing Two-Dimensional arrays, constant objects, Destructors.

Chapter 3: Sections 3.1-3.7.

3.1. Introduction:

We have learnt that to initialize the private members of a class, we used a function known an

set_data (). The values for private members were passed as arguments to the function as shown

in the code given here.

Example 1:

Initializing private members of class

Explanation:

In the program, observe carefully that we are first creating an object of the class. We are

explicitly calling a class member function to initialize its data members. Though there is no

68

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

problem in this code, a basic concept of object-oriented is not followed here. We know

that C++ treats all its user-defined data types at par with its built-in data types. Therefore, when

we write, int 𝑥 = 10; to initialize an integer variable at the time of its declaration, then it is

normal to question as to why cannot write a code that initializes the object's data members

while it is being created or declared.

Therefore, to resolve this dissimilar behaviour, C + + provides a member function called the

constructor which enables an object to initialize itself when it is created. Like constructor, there

is another member function called the destructor which de-initializes an object. We will read

more about this function in the following sections.

3.2. Constructor:

A constructor is a special member function of a class which is automatically invoked at the

time of creation of an object to initialize or construct the values of data members of the

object. However, some special points to note about a constructor function are as follows.

 The name of the constructor is the same as that of the class to which it belongs.

 A constructor must be declared in the public section.

 It should not be explicitly called because a constructor is automatically invoked when

an object of a class is created.

 A constructor can never return any value; therefore, unlike a normal function, a

constructor does not have any return value (not even void).

 A constructor cannot be inherited and virtual. We will read about this aspect in

Chapter 12 on Inheritance.

 The address of a constructor cannot be referred to in programs. Therefore, pointers

and references do not work with constructors.

 A constructor cannot be declared as static, volatile, or const.

 Like a normal function, a constructor function can also be overloaded.

 Like a normal function, a constructor function can also have default arguments.

Note:

The C++ run time mechanism ensures that constructor is the first member function to be

executed when an object of that class is created.

69

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Like a normal class member function, a constructor can be either defined inside the class or

outside the class. The syntax for declaring and defining a constructor inside the class can be

given as shown in Fig. 3.1(a). Similarly, the syntax for declaring and defining a constructor

outside the class can be given as shown in Fig. 3.1(b).

Figure 3.1 (a) Declaring and defining a constructor within a class, (b) Defining a constructor

outside the class

3.3. Types of Constructors:

A constructor function can be classified as follows:

 Dummy constructor

 Copy constructor

 Default constructor

 Dynamic constructor

 Parameterized constructor

Figure 3.2 gives the classification of constructors.

Figure 3.2 Types of constructor

Constructor

Dummy Default Parameterized Copy Dynamic

70

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

3.3.1. Dummy Constructor (Do Nothing Constructor):

In Chapter 9, we had been writing programs without any constructor. In such cases, the C++

run

time mechanism calls a dummy constructor which does not perform any action. Here, action

means

does not initialize any data member and thus, the variables acquire a garbage (irrelevant) value.

Consider the program given here that makes use of a dummy constructor.

Example 3.2:

 3.3.2. Default Constructor:

A constructor that does not take any argument is called a default constructor. The default constructor

simply allocates storage for the data members of the object. It may even initialize the values of those

data members. Let us rewrite the same program given earlier but with a default constructor.

Example 3.3:

71

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

3.3.3. Parameterized Constructor

A constructor that accepts one or more parameters is called a parameterized constructor. The

program code given here uses a parameterized constructor to initialize the data member of the

class.

Example 3.4:

Initialize data member of the class through parameterized constructor

Programming Tip: You can call a constructor from main() since a constructor is like a

member function declared in the public section.

 3.3.4. Copy Constructor:

A copy constructor takes an object of the class as an argument and copies data values of members of

one object into the values of members of another object. Since it takes only one argument, it is also

known as a one argument constructor. The primary use of a copy constructor is to create a new object

from an existing one by initialization. For this, the copy constructor takes a reference to an object of

the same class as an argument.

Example 3.5:

72

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

In the program, the first object N1 invokes the parameterized constructor to initialize its data

members. The objects N2 and N3 invoke the copy constructor. There are two ways of invoking

the copy constructor. The first is invoked by writing Numbers N2 (N1); and the second way is

writing Numbers N3 = N1;. Both the statements perform the same task of initializing the data

member of N2 and N3 with the value of data member of N1.

 Besides these explicit calls to the copy constructor, the copy constructor is implicitly called

when a function accepts an object as an argument using the call-by-value technique or returns

an object by value. In both the cases, a copy of the object is made and passed to the destination

function.

 Note:

A copy constructor is called for at the time of invocation. If an assignment is made after the

object has been created, then the assignment operator, and not the copy constructor, would

work. In the program, if we write

Numbers N1(20), N2;

N1 N2; // here the assignment operator would work.

 Why Do Copy Constructors Take Objects by Reference and Not by Value?

Copy constructors take objects by reference and not by value. As mentioned earlier, when an

object is passed by value, the copy constructor is implicitly called to create a copy of the

original argument. If the copy constructor had been designed to accept the object by value, then

it would have resulted in an infinite recursion; the copy constructor would have called another

copy constructor, which in turn, would have called another copy constructor, and so on, thereby

consuming more time and space. To avoid such a situation, C++ mandates the copy

constructor's parameter to be passed by reference.

73

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Note

The parameter to the copy constructor can be declared as const if you want the original

object's data members values should not be altered.

3.3.5 Dynamic Constructor

Dynamic constructors, as the name suggests, are those constructors in which memory for data

members is allocated dynamically. Dynamic constructor enables the program to allocate the

right amount of memory to data members of the object during execution. This is even more

beneficial when the size of data members is not the same each time the program is executed.

The memory allocated to the data members is released when the object is no longer required

and when the object goes out of scope.

Example 3.6: Dynamic constructor

74

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

3.4. Constructor With Default Arguments:

Like other functions, constructors can also have default arguments. When an object of a class

is created, the C++ compiler calls the suitable constructor for initializing that object. Consider

the program given here which makes use of a constructor with default arguments.

Programming Tip: A compiler error will be generated if you try to return any value from a

constructor or a destructor. You can call a constructor from a destructor.

Example 1: Constructor with default arguments

using namespace std;

#include<iostream>

class Student

{private:

int roll_no;

int marks;

public:

Student()

{ roll_no=0;

marks = 0;

}

student(int r, int m = 0)

{ roll_no = r;

marks = m;

}

void show_data()

{ cout<<"\n ROLL NO. = "<<roll_no;

cout<<"\t MARKS = "<<marks;

}

};

main() // default constructor called

{ Student S1;

S1.show_data();

Student S2(3);

S2.show_data();

75

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Student S3(05, 98);

S3.show_data();

}

OUTPUT

ROLL NO. = 0 MARKS = 0

ROLL NO. = 3 MARKS = 0

ROLL NO. = 5 MARKS = 98

Explanation:

 In the program, when the first object is created without any arguments, the default constructor

would be called and data members will be initialized with zero. While creating the second

object, one parameter is explicitly passed and the second argument is missing. Therefore, the

default value will be used to initialize the missing data member. However, during the third

object, both parameters are explicitly passed. Therefore, the default value will be overridden

and the parameter's value will be used to initialize the data member.

Note: The missing argument(s) must always be the trailing ones.

[Programming Tip:

C++ allows users to place default arguments in the definition of a constructor rather than in

the declaration.]

Now consider the same code again with a slight modification.

using namespace std;

#include<iostream>

class Student

{ private:

int roll_no;

int marks;

public:

Student() //constructor 1

{ roll_no = 0;

marks = 0;

}

76

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Student(int r =0, int m = 0) // constructor 2

{ roll_no = r;

marks = m;

}

void show_data()

{ cout<<"\n ROLL NO. = "<<roll_no;

cout<<"\t MARKS= "<<marks;

 }

};

main()

{ Student S1; // which constructor to call? ERROR

S1.show_data();

Student S2(03);

S2.show_data();

Student S3(05, 98);

S3.show_data();

}

Explanation:

 If you compile this program, you will get an error. In the program, there are two constructors:

one is the default constructor and the second is with both default arguments. When this program

is compiled, the compiler gets confused which one of the two constructors to call as both of

them satisfy the condition to be called during creation of object S1. Hence, an error will be

shown. The moment you remove any one of the constructor the program will compile

successfully.

Note:

A constructor that has all default arguments is similar to a default (no - argument) constructor.

3.5. Constructor Overloading:

Like normal functions, constructors can also be overloaded. When a class has multiple

constructors, they are called overloaded constructors. Some important features of overloaded

constructors are as follows:

 They have the same name; the names of all the constructors is the name of the class.

77

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 Overloaded constructors differ in their signature with respect to the number and

sequence of arguments passed.

When an object of the class is created, the specific constructor is called. Consider the

program code given here which uses the concept of overloaded constructors.

Example 1:

Multiple constructors in a program

using namespace std;

#include<iostream>

#include<string.h>

class Person

{ private;

int age;

char first_name [10];

char middle_name[10];

char last_name[10];

public:

Person() //Constructor 1 – default constructor

{ age = -1;

strcpy(first_name, "\0");

strcpy(middle_name, "\0");

strcpy(last_name, "\0");

 }

Person(int a) //Constructor 2 - constructor with one argument

{ age = a;

strcpy(first_name, "\e");

strcpy(middle_name, "\0");

strcpy(last_name, "\0");

}

Person(int a, char *fn) //Constructor 3 - constructor with two arguments

{ age = a;

78

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

strcpy(first_name, fn);

strcpy(middle_name, "\0");

strcpy(last_name, "\0");

}

Person(int a, char *fn, char mn[])

//Constructor 4 constructor with three arguments

{ age = a;

strcpy(first_name, fn);

strcpy(middle_name, mn);

strcpy(last_name, "\0");

}

Person(int a, char *fn, char mn[], char * In)

// Constructor 5 constructor with four arguments

{ age = a;

strcpy(first_name, fn);

strcpy(middle_name, mn);

strcpy(last_name, In);

}

void show_data()

{ cout<<"\n NAME: "<<first_namecc" "<<middle_name<<" "<<last_name;

 cout<<"\t\t AGE: "<<age;

}

};

main()

{

Person P1; //Constructor 1 called

P1.show_data();

Person P2(18); //Constructor 2 called

P2.show_data();

Person P3(21, "Goransh"); //Constructor 3 called

P3.show_data();

Person P4(25, "Aditi", "Raj"); //Constructor 4 called

79

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

P4.show_data();

Person P5(32, "Pallav", "Raj", "Thareja"); //Constructor 5 called

P5.show_data();

}

OUTPUT

NAME : AGE = -1

NAME : AGE = 18

NAME : Goransh AGE = 21

NAME : Aditi Raj AGE = 25

NAME : Pallav Raj Thareja AGE = 32

Note:

When array of objects is created, the constructor is called for each object. Therefore, if we

say class student s[5], then the constructor will be called five times not once.

Program 3.1:

Write a program that uses an overloaded constructor to dynamically allocate memory to an

array and thus find the largest of its elements.

using namespace std;

#include<iostream>

class Array

{ private:

 int *arr;

 int n;

 public:

 Array()

 { n=0; }

 Array(int);

 void show_data();

 int largest();

}

Array ;: Array(int num)

80

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

{ n = num;

 arr = new int [n];

 cout<<"\n Enter the eleme

nts : ";

 for(int i=0;i<n;i++)

 cin>>arr[i];

}

void Array :: show_data()

{ for(int i=0;i<n;i++)

 cout<<" "<<arr[i];

}

int Array :: largest()

{ int largest = arr[0];

 for(int i=1;i<mn;i++)

 { if(arr[i]>largest)

 largest = arr[i];

 }

 return largest;

}

main()

{ int size;

 cout<<"\n Enter the size of the array : ";

 cin>>size;

 Array Arr(size);

 Arr.show_data();

 cout<<"\n Largest = "<<Arr.largest();

}

OUTPUT

Enter the size of the array : 5

Enter the elements : 10364

10364

81

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Largest =6

Programming Tip: You can call a constructor from a destructor and vice versa

Program 3.2

Write a program that uses dynamic constructor to allocate memory to an array. Count

the number of even and odd elements.

using namespace std;

#include<iostream>

class Array

{ private:

 int *arr;

 int n;

 int num_even;

 int num_odd;

 public:

 Array(int);

 void show_data();

};

Array :: Array(int num)

{ n = num;

 num_even = 0;

 num_odd = 0;

 arr = new int[n];

 cout<<"\n ENter the elements : ";

 for(int i=0;i<n;i++)

 cin>>arr[i];

}

void Array :: show_data()

{ int i;

 cout<<"\n Array is ";

 for(i=0;i<n;i++)

 cout<<" "<<arr[i];

82

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 for(i=0;i<n;i++)

 { if(arr[i]%2 == 0)

 num_even++;

 else

 num_odd++;

 }

 cout<<"\n Number of evens = "<<num_even;

 cout<<"\n Number of odds = "<<num_odd;

}

main()

{ int size;

 cout<<"\n Enter the size of the array : ";

 cin>>size;

 Array Arr(size);

 Arr.show_data();

}

OUTPUT

Enter the size of the array : 7

Enter the elements : 1234567

Array is 12 2 3 5 6 7

Number of evens = 3

Number of odds = 4

Program 3.3:

Write a program that uses overloaded constructors and dynamically allocates memory

to a string. Demonstrate the use of copy constructor

using namespace std;

#include<iostream>

#include<string.h>

class String

{ private:

int length;

char *str;

83

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

public:

String()

{ length = 0; }

String(char *s)

{ length = strlen(s);

str = new char[length + 1];

strcpy(str, s);

}

String(String &s)

{ length=s.length;

str = new char[length + 1];

strcpy(str, s.str);

 }

void show str()

{ cout.write(str, length); }

};

main()

{ String s1("Welcome to the world of programming");

String s2=s1;

cout<<"\n String (s2)=";

s2.show_str();

}

OUTPUT

String (s2) = welcome to the world of programming

3.6. Constant Objects:

Since C++, treats user defined variables same as built in data type variables, it permits users

to declare constant objects as we have const int, const float, etc. The syntax for defining a

constant object is as follows:

3.6.1. Key Features of Constant Object:

 Constant object can be initialized only by a constructor. This means that a constant object is

 initialized during its creation.

 Data members of the constant object cannot be modified by any member function. This

84

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

means

that member function can only read the values of data members and not modify

them.

 Constant objects behave as read only object. Their data members are read only

members.

Let us consider a small program which declares a constant

object.

Example 1: Constant object

Explanation:

 In the program, QT is a constant object and show_details() is a constant member function.

Now,if you make a member function that tries to change the quote or its author, will result

in an error.

 Note Constant objects should be accessed only by constant member

functions.

85

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

3.7. Destructors:

Like a constructor, a destructor is also a member function that is automatically invoked.

However, unlike the constructor which constructs the object, the job of destructor is to

destroy the object. For this, it deallocates the memory dynamically allocated to the variable(s)

or perform other cleanup operations.

3.7.1 Important Features:

 The name of the destructor is also the same as that of the class. However, the

destructor's name is preceded by the tilde symbol ' ∼ '.

 A destructor is called when an object goes out of scope.

 A destructor is also called when the programmer explicitly deletes an object using the

delete operator.

 Like a constructor, a destructor is also declared in the public section.

 The order of invoking a destructor is the reverse of invoking a constructor.

 Destructors do not take any argument and hence cannot be overloaded.

 A destructor does not return any value.

 A destructor must be specifically defined to free (de-allocate) the resources such as

memory and files opened that have been dynamically allocated in the program.

 The address of a destructor cannot be accessed in the program.

 An object with a constructor or a destructor cannot be used as a member of a union.

 Constructors and destructors cannot be inherited. We will discuss this topic in Chapter

12 on Inheritance.

 Unlike constructors, destructors can be virtual. We will read more on this in Chapter

12 on Inheritance.

Note: A class can have only one destructor.

Consider the program code and its output which makes it clear that the invocation timing of a

destructor is just the reverse of a constructor.

Example 1: Calling a constructor, destructor

Programming Tip: Deleting an object more than once is a serious error.

 using namespace std;

86

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 #include<iostream>

 class Sample

 { private:

 int x ;

 public:

 Sample(int n)

 { x=n;

 cout<<"\n Constructor Called for object with value : "<<x;

 }

 ~Sample()

 { cout<<"\n Destructor Called for object with value : "<<x;

 }

};

main()

{ Sample S1(1);

Sample S2(2);

Sample S3(3);

}

OUTPUT

Constructor Called for object with value : 1

Constructor Called for object with value : 2

Constructor Called for object with value : 3

Destructor Called for object with value : 3

Destructor Called for object with value : 2

Destructor Called for object with value : 1

Note If the programmer has not defined any destructor, then the C++ compiler automatically

declare a destructor as an inline public member function of its class.

Program 1:

Write a program that uses static variables to keep a track of number of objects created,

number of objects destroyed, and number of active objects in a program.

using namespace std;

#include<iostream>

87

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

class Sample

{ private:

 static int num_objects;

 static int num_objects_destroyed;

 public:

 Sample()

 { num_objects++; }

 ~Sample()

 { num_objects_destroyed++; }

 void show_data()

 { cout<<"\n\n\n Number of objects created : "<<num_objects;

 cout<<"\n Number of objects destroyed : "<<num_objects_destroyed;

 cout<<"\n Number of objects active : "<<num_objects –

 num_objects_destroyed;

 }

};

int Sample :: num_objects = 0;

int Sample :: num_objects_destroyed = 0;

void my_func()

{ Sample s8, s9;

 s9.show_data();

}

main()

{ Sample s1, s2, s3;

 { s1.show_data();

 Sample s4;

 { Sample s5;

 s5.show_data();

 }

 }

 s3.show_data();

 my_func();

88

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 s2.show_data();

}

OUTPUT

Number of objects created : 3

Number of objects destroyed : 0

Number of objects active : 3

Number of objects created : 5

Number of objects destroyed : 0

Number of objects active : 5

Number of objects created : 5

Number of objects destroyed : 2

Number of objects active : 3

Number of objects created : 7

Number of objects destroyed : 2

Number of objects active : 5

Number of objects created : 7

Number of objects destroyed : 4

Number of objects active : 3

Program 2:

Write a program that dynamically allocates memory to a matrix. Add two matrices,

display the resultant matrix, and finally free the memory space.

#include<iostream.h>

class Matrix

{ private:

 int **parr;

 int rows;

 int cols;

 public:

 Matrix()

 { rows = cols = 0;

 parr = NULL;

 }

89

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 ~Matrix();

 Matrix(int r, int c);

 void get_data();

 void show_data();

 Matrix &add(Matrix &A1, Matrix &A2);

};

Matrix :: Matrix(int r, int c)

{ rows = r;

 cols = c;

 parr = new int *[rows];

 for(int i=0;i<rows;i++)

 parr[i] = new int [cols];

}

Matrix :: ~Matrix()

{ for(int i=0;i<rows;i++)

 delete parr[i];

 delete parr;

 cout<<"\n DESTROYED";

}

void Matrix :: get_data()

{ for(int i=0;i<rows;i++)

 { for(int j=0;j<cols;j++)

 cin>>parr[i][j];

 }

}

void Matrix :: show_data()

{ for(int i=0;i<rows;i++)

 { cout<<"\n";

 for(int j=0;j<cols;j++)

 cout<<" "<<parr[i][j];

 }

}

90

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Matrix & Matrix :: add(Matrix &A1, Matrix &A2)

{ for(int i=0;i<rows;i++)

 { for(int j=0;j<cols;j++)

 parr[i][j] = A1.parr[i][j] + A2.parr[i][j];

 }

 return *this;

}

main()

{ int r, c;

 cout<<"\n Enter the number of rows and columns of 2D Arrays : ";

 cin>>r>>c;

 Matrix Arr1(r,c), Arr2(r,c), Arr3(r,c);

 cout<<"\n Enter the first matrix : ";

 Arr1.get_data();

 cout<<"\n Enter the second matrix : ";

 Arr2.get_data();

 Arr3.add(Arr1,Arr2);

 cout<<"\n Array 1 is :\n";

 Arr1.show_data();

 cout<<"\n Array 2 is :\n";

 Arr2.show_data();

 cout<<"\n Resultant Array is :\n";

 Arr3.show_data();

}

OUTPUT

Enter the number of rows and columns of 2D Arrays : 2 2

Enter the first matrix : 1 2 3 4

Enter the second matrix : 5 6 7 8

Resultant Array is :

6 8

10 12

Destroyed

91

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Destroyed

Destroyed

Program 3:

Write a program that dynamically allocates memory to a string. Encrypt this string and

de-allocate the memory.

using namespace std;

#include<iostream>

#include<string.h>

class String

{ private:

 int len;

 char *str;

 public:

 String(char *s)

 { len = strlen(s);

 str = new char[len+1];

 strcpy (str, s);

 }

~String()

{ len = 0;

delete []str;

}

void show_string()

{ cout<<str;

}

char * encrypt();

};

char * String :: encrypt()

{ int i = 0;

 while(i<len)

 { str[i] += 3;

 i++;

92

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 }

 show_string();

}

main()

{ String S1("ABCDE");

 cout<<"\n Original String : ";

 S1.show_string();

 cout<<"\n Encrypted String : ";

 S1.encrypt();

}

OUTPUT

Original String : ABCDE

Encrypted String : DEFGH

Program 4:

Write a program to sort an array that has been allocated memory dynamically.

using namespace std;

#include<iostream>

class Array

{ private:

 int size;

 int *arr;

 public:

 Array()

 { size = 0;

 arr = NULL;

 }

 Array(int n)

 { size = n;

 arr = new int [size];

 }

 ~Array()

 { cout<<"\n Destroyed ";

93

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 delete [] arr;

 size = 0;

 }

 void get_data();

 void show_data();

 void sort();

};

void Array :: get_data()

{ for(int i=0;i<size;i++)

 cin>>arr[i];

}

void Array :: show_data()

{ for(int i=0;i<size;i++)

 cout<<" "<<arr[i];

}

void Array :: sort()

{ for(int i=0;i<size;i++)

 { for(int j=0;j<size-i;j++)

 { if(arr[j]>arr[j+1])

 { int temp = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = temp;

 }

 }

 }

}

main()

{ Array arr(7);

 cout<<"\n Enter the array elements : ";

 arr.get_data();

 cout<<"\n Original Array : ";

94

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 arr.show_data();

 arr.sort();

 cout<<"\n Sorted Array : ";

 arr.show_data();

}

OUTPUT

Enter the array elements : 9 1 8 3 645

Original Array : 9 1 8 3645

Sorted Array : 1 3 4 5689

Destroyed

Note Unlike local objects, static objects are constructed only the first time they are defined.

These objects are destroyed at the end of the program.

3.7.2 Interesting Points about Constructors and Destructors

 You can call a constructor from main() by writing

object_name.constructor name

However, to call a destructor from main(), you must specify the object name as well as the

class name. For example, if we have a class Sample, and s as the object of Sample, then to

call its constructor we must write,

s.Sample();

To call the destructor, you need to write

s.Sample :: ~Sample();

 You can call a constructor from a destructor. You can also call a destructor from a

constructor as shown in Fig. 10.3

95

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

class Sample

{ -------

 Sample()

 { -------

 Sample :: ~ Sample();

 }

};

Note: The destructor is being called

using the class name.

class Sample

{ --------

 ~Sample()

 { Sample();

 }

};

Note: The constructor is being called without

using the class name. However, it may result in

recursive call of constructor-destructor till stack

overflows and abnormal program termination

occurs.

class Sample

{ --------

 Sample()

 { ---- ----

 Sample :: ~ Sample();

 }

}; Note: The

destructor is being called using the

class name.

class Sample

{ ------

 ~Sample()

 { Sample();

 ----- ---

 }

};

Note: The constructor is being called without

using the class name.

96

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

class Sample

{ --------

 Sample()

 { --------

 Sample :: ~ Sample();

 }

};

Note: The destructor is being called

using the class name.

class Sample

{ -------

 ~Sample()

 { Sample();

 ---- ---

 }

};

Note: The constructor is being called without

using the class name.

Figure 3.3 Calling destructor

 If calling a constructor or a destructor is based on some decision, then it is called a

conditional constructor or a conditional destructor, as shown in Fig. 3.3.

 C + + allows constructors and destructors to be defined in the private section.

However, it is a good programming habit to declare them in the public section. When

a constructor or a destructor is declared as private, it cannot be called implicitly. They

have to be called explicitly through a public member function as shown here.

class Sample

{ --------

 Sample()

 { if(cond)

 Sample :: ~ Sample();

 }

};

class Sample

{ -------

 ~Sample()

 { if(cond)

 Sample();

 }

};

Figure 3.4 Conditional destructor

97

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

using namespace std;

#include<iostream>

class Sample

{

 int val; //Stores the Data

 Sample() //Private Constructor

 {

 val = 10;

 }

 public:

 static Sample Initialize()

//Static Member Function generally called the Factory Method.

 {

 return Sample(); //Return the Object.

 }

 void Display() //Used to display the result.

 {

 cout<<"Value of Data is "<<val<<endl;

 }

};

main()

{

 Sample Obj = Sample::Initialize();

//Static Member function called to return the object.

 Obj.Display();

}

OUTPUT

Value of Data is 10

 C++ allows programmers to have a class named main. However, when there is a class

named main, the use of keyword class before main (the class_name) is mandatory.

This is shown in the code given below.

98

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

class main

{ private:

 int x;

 public:

 main()

 { x=10

 cout<<"\n x = "<<x;

 }

~main()

 { cout<<"\n Destroyed";

 }

 };

main()

{ class main M;

}

OUTPUT

 x = 10

 Destroyed

 You may call a constructor recursively.

 We know that program execution starts with main(). However, when the program has

a global object (one defined before main()), the constructor of the global objects gets

called before the main(). However, the destructor of the global object is executed after

the execution of main(). Execute the code given here to understand this concept.

Example 2: Global object

using namespace std;

#include<iostream>

class Sample

{ public:

 Sample()

 { cout<<"\n IN CONSTRUCTOR"; }

 ~Sample()

99

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 { cout<<"\n IN DESTRUCTOR"; }

};

Sample s;

main()

{ cout<<"\n IN MAIN";

}

OUTPUT

IN CONSTRUCTOR

IN MAIN

IN DESTRUCTOR

Exercises

 1.What is the significance of a constructor?

 2. Is it mandatory to define a constructor for every class?

3. Can a C++ program that has a class execute with out a constructor?

4. Why a constructor is called a special member function?

5. Explain some key features of a constructor.

6. Discuss the different types of constructors.

7. Why does copy constructor accept the objects by reference and not by value?

8. Explain the features of a destructor function.

 9. Differentiate between a constructor and a destructor.

10. How can a destructor be called from a constructor?

Programming Exercises

1. Write a program that demonstrates the use of a parameterized constructor.

2. Write a program that demonstrates the use of a copy constructor.

3. Write a program that demonstrates the use of default arguments in a constructor.

4. Write a class that stores a string and its status details such as number of lower case

characters, consonants, and so on.

5. Write a program that demonstrates the use of constant objects.

100

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Unit IV

Introduction, defining operator over loading, over loading unary operator, Overloading Binary

operator, Overloading Binary operators using Friends, Manipulation of strings using operators,

Some other Operator over loading examples, Rules for Over loading Operators

Chapter 4: Sections 4.1-4.6.

4.1. Introduction:

The utility of operators such as +, =, *, /, >,and so on is predefined in any programming

language. Programmers can use them directly on built-in data types to write their programs.

However, these operators do not work for user-defined types such as objects. Therefore, C++

allows programmers to redefine the meaning of operators when they operate on class objects.

This feature is called operator overloading. With this feature, the overloading principle is not

only applied to functions but also on operators.

Operator overloading allows programmers to extend the meaning of existing operators so that

in addition to the basic data types, they can be also applied to user-defined data types.

4.2. Scope of Operator Overloading:

 With operator overloading, a programmer is allowed to provide his own definition for an

operator to a class by overloading the built-in operator. This enables the programmer to perform

specific computation when the operator is applied on class objects and apply a standard

definition when the same operator is applied on a built-in data type. Therefore, while evaluating

an expression with operators, C++ looks at the operands around the operator. If the operands

are of built-in types, C++ calls a built-in routine. If the operator is being applied on user-defined

operand(s), the C++ compiler checks if the programmer has an overloaded operator function

that it can call. If such a function whose parameters match the type(s) and number of the

operands exists in the program, the function is called; otherwise, a compiler error is generated.

Another Form of Polymorphism

Like function overloading, operator overloading is also a form of compile time polymorphism.

Operator overloading is, therefore, less commonly known as operator adhoc polymorphism

101

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

since different operators have different implementations depending on their arguments.

Operator overloading is generally defined by the language, the programmer, or both.

 Advantages of Operator Overloading

We can easily write C++ programs without the knowledge of operator overloading; however,

the knowledge and use of this feature can help us in many ways. Some of them are as follows:

Operator overloading enables programmers to use notation closer to the target domain. For

example, to add two matrices, we can simply write M1 + M2, rather than writing M1.add (M2).

With operator overloading, a similar level of syntactic support is provided to user-defined types

as provided to the built-in types.

In scientific computing where computational representation of mathematical objects is

required, operator overloading provides great ease to understand the concept.

Operator overloading makes the program clear. For example, the statement div(mul(M1, M2),

add(M1,M2)); can be better written as M1 * M2 / M1+M2

4.3. Oрerators that can and cannot be overloaded:

In C++, barring a few operators, programmers can overload almost any operator. The operators

that can be overloaded are given in Table 4.1.

Table 4.1 Operators that can be overloaded

However, the exceptional operators that cannot be overloaded are as follows:

 Scope resolution operator (::)

 Member selection operator (.)

 Member selection through a pointer to a function (.*)

 Ternary operator (?:)

 Size of operator (size of)

Important Points about Operator Overloading

102

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 Operator overloading should not change the operation performed by an operator. You

cannot redefine the meaning of an operator. Therefore, when the + operator will be

overloaded, it will always perform addition and not subtraction, multiplication, or any

other operation.

 The two operators-the assignment operator (=) and the address operator(&)-need not be

overloaded. This is because these two operators are already overloaded in the C++

library. For example, when you write Complex1 = Complex2, then the contents of

object Complex2 will be copied into the contents of object Complex1 automatically.

Similarly, the address operator returns the address of every object in memory.

 Operator overloading cannot alter the precedence and the associativity of operators.

However, you may use parenthesis to change the order of evaluation.

 New operators such as 1ike **, <>, 1&, and so on cannot be created. Only existing

operators can be overloaded.

 When operators such as &&, ||, and, are overloaded, they lose their special properties

of short-circuit evaluation and sequencing. This means that after overloading, say &&

operator, you cannot expect &&= to perform the logical AND as well as assignment.

To perform both the operations, you must specifically overload &&= operator and not

just && operator.

 Overloaded operators cannot have default arguments.

 All overloaded operators except the assignment operator are inherited by derived

classes. This will be clear in Chapter 12 on Inheritance.

 Arity or the number of operands cannot be changed. Therefore, a unary operator such

as ++, --, !, and so on will always be applied on one operand and binary operator such

as +, -, *, and so on will be applied on two operands.

 Overloading an operator that is not associated with the scope of a class is not

permissible. This means that the overloaded operator must have access to at least one

object of the class in which it is being overloaded. This object may be accessed

implicitly (using member function) or explicitly (using the friend function).

103

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.4. Implementing Operator Overloading:

 Operator overloading is usually implemented in two ways as follows:

 Through member function

 Through friend function

Although operators can be easily overloaded using any of these techniques, the choice of

technique is just a matter of programmer's convenience. However, you must consider the major

difference when overloading using a member and/or a friend function as shown in Table 2.

4.5. Overloading Unary Operators:

Unary operators work only on a single operand. Some examples of unary operators are as

follows:

 Increment operator (++)

 Decrement operator (--)

 Unary minus operator (-)

 Logical not operator (!)

As stated earlier, unary operators can be overloaded using a friend function or a member

function. In both the cases, the unary operator operates on the object for which it was called.

Usually, the operator is specified on the left side of the object, as in ++obj, -obj, and !obj.

However, the operator may appear on the right side of the object when it is a post-fix increment

or a post-fix decrement such as obj++ or obj--.

104

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.5.1. Using a Member Function to Overload a Unary Operator

The syntax for operator overloading using a member function can be given as

return_type operator op()

where return_type is the return type and op is the operator to be overloaded. Let us consider a

small program that overloads the unary operator using member function. We know that if we

have a number say, 7, then the unary operator when applied to it will make it negative, which

is -7. However, if we apply the same operator to a number say -10, then the result would be 10

(positive).

Example 1:

Overloading unary operator with member function

using namespace std;

 #include <iostream>

105

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.5.2. Returning Object:

The operator overloading function in Example 11.1 does not return any value. However, if we

want to have a statement like N2 =-N1; then the above code must return a value (an object).

Therefore, the function code can be modified to return a value as shown in Example 11.2 given

here.

Example 1: Returning Object

OUTPUT

x = 10

4.5.3. Returning a Nameless Object:

The function code operator overloading could be made simpler and shorter by returning a

nameless object. This could be done by writing

Number operator -))

 { x = -x;

 return Number(x);

106

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

}

Note:

There is no restriction on the return types of the unary operators.

4.5.4. Using a Friend Function to Overload a Unary Operator:

When a unary operator is overloaded using a friend function, then you must ensure the

following:

 The function will take one operand as an argument.

 This operand will be an object of the class.

 The function will use the private members of the class only with the object name.

 The function may take the object by using value or by reference. However, if the object

is passed using value, then any changes made to the data members of the object in the

function will not be reflected back in the calling function. Therefore, if you want the

changes to persist, pass the object by reference.

 The function may or may not return any value. It depends on the usage. Since we had

to assign the value to another object we have returned.

 The friend function does not have access to this pointer. The syntax for operator

overloading using a member function can be given as

friend return_type operator op (class_name object)

where return_type is the return type, and op the operator to be overloaded and object is an

instance of the class on which the operator has to be applied. The program given here performs

the same operation but using a friend function.

Example 1:

Friend function for operator overloading

107

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Note:

Operator overloaded functions return values so that a cascaded assignment expression can be

formed.

4.5.5. Overloading the Prefix Increment and Decrement Operators:

The syntax for overloading prefix increment and decrement operators is

operator ++ ()

 { // code

}

108

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

In this Example 1, we have overloaded the ++ and - operators. While ++ operator has been

overloaded using a member function, the operator on the other hand has been overloaded using

a friend function. Although operators can be overloaded in any of the two ways, we have used

both the techniques for better clarity. Note that the function code for both the operators first

changes the original value and then returns the object with the modified value.

Example 1:

Overloading ++ and – operators

109

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.5.6. Overloading the Post-fix Increment and Post-fix Decrement Operators:

 Although the prefix and post-fix increment operators both have the same symbol ++, they have

different tasks to perform. Here, the question arises as to how the compiler knows which

version to call for. To distinguish between the overloaded prefix and the post-fix operator

function, there is a slight change in the signature of post-fix operation. Instead of writing

Number operator ++(), we Write Number operator ++(int). Here, int is a dummy argument.

Therefore, we have used function overloading for the operator overloaded functions. Always

remember that in overloaded post-fix operators, int is just a dummy argument to give a signal

to the compiler to create the post-fix notation of the operator. Observe carefully that int is not

followed by a variable name just because its value will never be used. Look at the program

given here which overloads both the prefix and post-fix increment as well as decrement

operators.

Note:

When the compiler sees ++obj (pre-increment), it generates a call to operator++(); but when it

sees obj++, it generates a call to operator++(int).

110

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.6. Overloading binary operators:

Binary means two and binary operators mean operators that work with two opearnds. Like

unary operators, binary operators such as +, -, *, /, =, , 1, %, ^, &&, ||, <> can also be

overloaded. Binary operators are also overloaded either using member functions or friend

functions. While the member function will be invoked using an object of the class and will

accept one argument, the friend function, on the other hand, will accept two arguments. The

syntax of overloading a binary operator using a member function can be given as return_type

operator op(arg)

Here, operator is the keyword, op is the operator to be overloaded, and arg is the argument of

any type that will be used in the function. While the first operand or the object which invokes

the function, is taken implicitly, the other operand on the other hand, is passed explicitly.

Therefore, the first operand's data members can be accessed directly without using the dot

operator but the second object's data members must be accessed using the dot operator.

For example, if c1 and c2 are objects of complex type, then overloaded + operator can be called

c3 = c1 + c2; this is equivalent to c3 = c1. operator+(c2);

111

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Note:

Binary operators must explicitly return a value. They might not attempt to change the original

values of the arguments.

Similarly, the syntax to overload a binary operator using a friend function is

friendreturn_type operator op (arg1, arg2)

Here, arg1 and arg2 are arguments of any type. However, one of them must compulsorily be

of the class type. When the binary + operator is overloaded in class complex using friend

function, then it will be invoked as c3 = c1 + c2; which is equivalent to writing c3 =

operator+(c1, c2);

Note:

There is no restriction on the return type of a binary operator overloaded function.

Operators such as =, (), [], and -> cannot be overloaded using friend functions.

Program 1:

Write a program to add two arrays using classes and operator overloading.

112

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Program 2:

Write a program to add two arrays using friend function and operator overloading.

113

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

 4.7. Overloading Special Operators:

In this section, we will discuss about overloading some special operators such as <<, >>, [], (), ->,

new, and delete. Before we discuss overloading of these operators, let us quickly revise their

functions.

new-to dynamically allocate memory

delete-to free the memory allocated dynamically

<<-to display a message

>>-to accept input from users

 [] and ()—are subscript operators

->-to access a class member

4.7.1. Overloading New and Delete Operators

 C++ allows programmers to overload the new and delete operators because of the

following reasons:

• To allow users to allocate memory in a customized way.

• To allow users to debug the program and keep track of memory allocation and deallocation in

114

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

their programs.

• To allow users to perform additional operations while allocating or deallocating memory.

The syntax for overloading the new operator can be given as follows:

void* operator new(size_t size);

The overloaded new operator receives a parameter size of type size_t, which specifies the number of

bytes of memory to be allocated.

The return type of the overloaded new must be void*. The overloaded function returns a pointer to

the beginning of the block of memory allocated.

Similarly, the syntax for the overloaded delete operator can be given as

void operator delete(void*);

The function receives a parameter ptr of type void* which has to be deleted. Note that the

function should not return anything.

Note that both of these overloaded new and delete operator functions are static members by

default. Therefore, they do not have access to the this pointer.

Note:

To delete an array of objects, the operator delete [] must be overloaded.

The program code given here demonstrates the use of overloaded new and delete operators.

Example 1:

Overloading new and delete operators

115

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Advantages of Overloading

The overloaded new operator function can accept arguments; therefore, a class

can have multiple overloaded new operator functions. This gives the programmer

more flexibility in customizing memory allocation for objects. For example,

116

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

This code will not only allocate memory for a single character but will also initialize the allocated

memory with the #character.

The overloaded new operator also enables programmers to squeeze some extra performance out of

their programs. For example, in a class, to speed up the allocation of new nodes, a list of deleted

nodes is maintained so that their memory can be reused when new nodes are allocated. In this case,

the overloaded delete operator will add nodes to the list of deleted nodes and the overloaded new

operator will allocate memory from this list rather than from the heap to speedup memory allocation.

The global new operator can be used only when the list of deleted nodes is empty.

• Overloaded new or delete operators also provide garbage collection for class's objects.

• Programmers can add exception handling routine in the overloaded new operator function.

• Programmers can use C++ memory allocation functions such as malloc() and realloc() to

allocate and re-allocate memory dynamically. For example, the function codes given here

allocate, re-allocate, and free memory dynamically.

117

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

The realloc() is used to change the size of the allocated block at address ptr with the size. The

address pointed to by ptr may change if the block is shifted to another location in memory. This

can happen when size bytes are not available in the previous allocated space. For example, if 10

bytes were allocated and now the user has called realloc() to allocate 20 bytes, then the address

pointed by ptr may change to point at the address where 20 bytes are available contiguously. The

realloc() returns the new value of ptr. However, if realloc() fails, it returns NULL and does not

free the origi- nal memory. Therefore, when using realloc(), you must save the previous pointer

value.

Note While a user can have any number of overloaded new operators, there can be only one over-

loaded delete operator. delete is different from delete[].

4.7.2 Overloading Subscript Operators [] and ()

The subscript operator-[]-is used to access array elements and can be overloaded to enhance its

functionality with classes. The syntax of overloading the subscript operator can be given as

follows:

Identifier [expression]

where identifier is the object of the class. The syntax is interpreted

as

identifier.operator[] (expression)

118

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

From the syntax, it is clear that the subscript operator is a binary operator in which the first operator is an

object of the class and the second operand is an integer index.

Note:

The overloaded operator [] () must be defined as a non-static member function of a class.

119

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Overloading Subscript Operator () rather than []

 When there are multiple subscripts, it is better to overload the operator() rather than

operator[]. This is because the operator[] always takes exactly one parameter, but

operator() can take any number of parameters. Let us consider a small piece of code to

learn how operator() is overloaded for a two-dimensional matrix.

120

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

121

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

4.7.3. Overloading Class Member Access Operator (->) :

C++ allows programmers to control class member access by overloading the member access

oper- ator (->). The -> operator is a unary operator as it takes only one operand, that is the

object of the class. The syntax for overloading the -> operator can be given as,

class_ptr *operator->()

where class_ptr is a pointer of class type. Before overloading the class member access operator,

the overloaded -> operator function must be a non-static member function of the class. The

program given here demonstrates the functionality of overloaded member access operator.

122

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

6.7.4. Overloading Input and Output Operators:

C++ allows input and output of built-in data types using the stream extraction operator >> and

the stream insertion operator <<. The capabilities of these operators can be extended to perform

input and output for user-defined types. However, before overloading the extraction and

insertion opera- tors, you must know the following aspects:

cin and cout are defined in class iostream.

• While cin is an object of istream class, cout is an object of the ostream class. We will read

more on the relationship between istream, ostream, iostream, cin, and cout later in chapter File

Handling.

• The insertion and extraction of operators will be overloaded by using a friend func- tion

because we need to call these functions without any object.

. The insertion and extraction operators must return the value of the left operand-the ostream

or istream object-so that multiple << or >> operators may be used in the same statement. The

syntax for overloading the >> function can be given as

friend ostream & operator << (ostream & output, My_class&obj)

{ // code

}

Example 1:

Overloading<<and >>operators

123

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Exercises:

1. Define the term 'operator overloading' and explain its significance.

2. How does operator overloading support the con-cept of polymorphism?

3. Can we perform function overloading on operator overloaded operators? If yes, how?

4. What are the advantages of overloading the operators?

5. Explain the syntax of overloaded operator func-tion defined as a class member function.

6. Give the syntax of overloaded operator function defined as a friend function.

7. List at least five operators that can be overloaded. Give the implementation of any one of them in

detail.

8. List the operators that cannot be overloaded.

9. What advantage do we get when operator over- loaded function returns an object?

10. What are the two techniques in which an operator can be overloaded?

124

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Unit V

Introduction, Defining Derived classes, Single inheritance, Making a private member in

heritable, Multi-level in heritance, Multiple inheritance, Hierarchical inheritance, Hybrid

inheritance

Chapter 5: Sections 5.1-5.8

5.1. Introduction:

Reusability is an important feature of object oriented programming (OOP). Reusing an existing

piece of code offers manifold benefits. It not only saves the effort and cost required to build a

software product but also enhances its reliability. Therefore, programmers need not re-write,

re-debug, and re-test the code that has already been tested and being used in existing software.

To support reusability, C++ supports the concept of reusing existing classes as it allows

programmers to create new classes that reuse prewritten and tested classes. The existing classes

are adapted as per user's requirements so that the newly formed classes can be incorporated in

the current software application being developed. The technique of creating a new class from

an existing class is called inheritance. The old or existing class is called the base class and the

new class is known as the derived class or sub-class. The derived classes are created by first

inheriting the data and methods of the base class and then adding new specialized data and

functions in it. During the process of inheritance, the base class remains unchanged. The

concept of inheritance is, therefore, frequently used to implement the is-a relationship. For

example, teacher is-a person, student is-a person; while both teacher and student are a person

in the first place, both also have some distinguishing features. Therefore, all the common traits

of teacher and student are specified in the Person class and specialized features are incorporated

in two separate classes of Teacher and Student. Similarly, a dentist or a surgeon is a doctor and

doctor is a person. Fig. 5.1 illustrates the concept of inheritance which follows a top-down

approach to problem solving. In top-down design approach, generalized classes are designed

first and specialized classes are derived by inheriting or extending generalized classes.

125

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Figure 5.1. Is-a relationship between classes

5.2.Defining Derived Classes:

A class can be derived from one or more base classes using the following syntax:

According to the syntax, the derived_class_name is derived from the base_class_name,

thereby inheriting some or all of its members. The access-specifier, also known as the

visibility-mode, is optional and if present, can be either public, private, or protected. If no

access-specifier is written, then by default, the class will be derived in private mode.

5.3.Making a private member in heritable:

Private:

Private is the highest level of data hiding. When a base class is privately inherited by a

derived class, then public members of the base class become private members of the derived

class. The access to private members cannot be inherited but the derived class can access

them using public member functions of the base class. This means that the object of a

privately inherited class cannot access the inherited members.

Note:

126

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Private members of the base class can never become members of the derived class.

Inheriting Protected Members

When a protected member is inherited in private mode, the protected member of the base

class becomes private member of the derived class. Although these members can be accessed

in the derived class, these are not available for further inheritance (in case of multi-level

inheritance) because private members cannot be inherited as shown in Fig. 5.2.

Figure.5.2. A class derived in private mode

5.4. Single Inheritance:

When a derived class inherits features from a single base class, it is called single inheritance

as given in Fig. 5.3. Consider the program given here that uses single inheritance to display

the details of a student.

Figure 5.3. Single inheritance

127

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Example 5.1. Single inheritance

128

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

 In the program, there are two classes- Student and Result. The class Student hold information

about student (roll number, course) and has functions to read and display the roll number. The

class Result stores the marks of the student in three subjects, calculates the total marks, and

displays all the information.

Note that Result is derived in public from class Student. Therefore, private member of ro1l_no

cannot be accessed, protected member of course becomes protected member of Result, and the

two public member functions becomes public members of the derived class. This means that

all the members of the base class except the ro11_no are accessible by the derived class. In the

get_data (), from Result class you can directly access course and get_rno () but not the ro11_

no. To access the ro11_no you have to access the private member indirectly through a public

member function of the class. In main (), the object of the derived class can access the public

member function of the base class but not the private or the protected members.

Program 5.1. Write a program in which class result inherits students in private mode.

129

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

130

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Program 5.2. Write a program in which class result inherits students in protected mode.

131

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

5.5. Multi-Level Inheritance:

The technique of deriving a class from an already derived class is called multi-level inheritance.

In Fig. 5.4, base class acts as the base for derived class 1, which in turn, acts as a base for

derived class 2. Therefore, derived class 1 is known as the intermediate base class as this class

provides a link for inheritance between the base class and the derived class 2. The chain of

classes from base class ->derived class 1 ->derived class 2 is known as the inheritance path. In

multilevel inheritance, the number of levels can go up to any number based on the requirement.

Consider the same program with multi-level inheritance.

Figure 5.4. Multi-level inheritance

132

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Example 1. Multi-level inheritance

133

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

 In the program, class Result is derived from Student in public mode. It can use all the

members of the class, except private members. However, these private members are being

used through the public member function total ().

5.6. Multiple Inheritance:

When a derived class inherits features from more than one base class shown in Fig. 5.5, it is

called multiple inheritance. The syntax for multiple inheritance can be given as follows:

Figure 5.5. Multiple inheritance

134

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

5.7. Hierarchical Inheritance:

When a class is inherited by more than one class, it is called hierarchical inheritance as

shown in Fig. 5.6. This type of inheritance is usually implemented when certain features at

one level are to be shared by many features at the next level. Some examples are as follows.

Figure 5.6. Hierarchical inheritance

 Base class account can be inherited by three classes such as savings account, fixed

deposit account, and current account.

 Student class can be inherited by three separate classes such as science, commerce,

and humanities

 Faculty class can be inherited by n number of departments such as commerce,

mathematics, computer science, electronics, and so on.

 In all these examples, a class hierarchy is formed in which the base class will include all the

features that are common to the derived classes. The derived class can inherit the features of

the base class and extend its features to better suit the requirements of the problem at hand.

Consider the program given here in which the class Student acts as the base class for two

classes-academic details and accounts details.

135

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

136

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Explanation:

The program shows that academic details are stored in a separate class and the accounts

details are stored in a separate class. The program uses inheritance to display all the

information about a student. Such type programs increases re-usability of codes.

5.8. Hybrid Inheritance:

Deriving a class that involves more than one form of inheritance is called hybrid inheritance.

For example, in Fig. 5.6, derived class 3 is derived from base class using multi-level as well as

hierarchical inheritance. Let us rewrite the program on student's result to implement hybrid

inheritance. In the program, there are two classes-Marks and Activities. The class result will

inherit both these classes and generate result. Finally, the result class would act as the base

class for student which will display the entire information about a particular user.

137

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Figure 5.7. Hybrid inheritance

Example 1: Hybrid inheritance

138

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Problem 2:

Write a program using multiple inheritance that allows class LCD_TV to inherit two classes-

product and manufacturer.

139

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

140

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

141

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Problem 3:

Write a program that has a class employee inherited by two classes-contract and permanent.

142

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

143

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

144

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Problem 4:

Write a program that implements hybrid inheritance. Classes Student and Faculty inherit the

class Person. Class Faculty must be inherited by the class Publications.

145

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

146

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

Exercises:

1.Is there any way by which a derived class can access private members of the base class?

 If yes, how?

2. What happens when a protected member is inher-ited in private mode and public mode?

147

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

3. Explain the different types of inheritance.

4. Explain the concept of single inheritance with the help of a program code.

5. Differentiate between public, private, and protected inheritance using suitable examples.

6. Is it mandatory for the derived class to have a constructor?

7. What are the advantages of calling a base class constructor before a constructor of the derived

class?

8. Explain the syntax of defining a derived class constructor.

9. Explain the concept of multi-level inheritance with the help of a suitable program code.

10. Explain the concept of multiple inheritance with the help of a program.

Study Learning Material Prepared by

Dr. S. KALAISELVI M.SC., M.Phil., B.Ed., Ph.D.,

ASSISTANT PROFESSOR,

DEPARTMENT OF MATHEMATICS,

SARAH TUCKER COLLEGE (AUTONOMOUS),

TIRUNELVELI-627007.

TAMIL NADU, INDIA.

